Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Volken is active.

Publication


Featured researches published by W. Volken.


Physics in Medicine and Biology | 2007

An efficient framework for photon Monte Carlo treatment planning

M.K. Fix; Peter Manser; D. Frei; W. Volken; Roberto Mini; Ej Born

Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) can usually only be performed using a cumbersome multi-step procedure where many user interactions are needed. This means automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new graphical user interface (GUI)-based photon MC environment has been developed resulting in a very flexible framework. By this means appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment, the MC particle transport has been divided into different parts: the source, beam modifiers and the patient. The source part includes the phase-space source, source models and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation, two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory; hence, no files are used as the interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, two patient cases are shown. Thereby, comparisons are performed between MC calculated dose distributions and those calculated by a pencil beam or the AAA algorithm. Interfacing this flexible and efficient MC environment with Eclipse allows a widespread use for all kinds of investigations from timing and benchmarking studies to clinical patient studies. Additionally, it is possible to add modules keeping the system highly flexible and efficient.


Medical Physics | 2011

Monte Carlo implementation, validation, and characterization of a 120 leaf MLC

M.K. Fix; W. Volken; D. Frei; Daniel Frauchiger; Ej Born; Peter Manser

PURPOSE Recently, the new high definition multileaf collimator (HD120 MLC) was commercialized by Varian Medical Systems providing high resolution in the center section of the treatment field. The aim of this work is to investigate the characteristics of the HD120 MLC using Monte Carlo (MC) methods. METHODS Based on the information of the manufacturer, the HD120 MLC was implemented into the already existing Swiss MC Plan (SMCP). The implementation has been configured by adjusting the physical density and the air gap between adjacent leaves in order to match transmission profile measurements for 6 and 15 MV beams of a Novalis TX. These measurements have been performed in water using gafchromic films and an ionization chamber at an SSD of 95 cm and a depth of 5 cm. The implementation was validated by comparing diamond measured and calculated penumbra values (80%-20%) for different field sizes and water depths. Additionally, measured and calculated dose distributions for a head and neck IMRT case using the DELTA(4) phantom have been compared. The validated HD120 MLC implementation has been used for its physical characterization. For this purpose, phase space (PS) files have been generated below the fully closed multileaf collimator (MLC) of a 40 × 22 cm(2) field size for 6 and 15 MV. The PS files have been analyzed in terms of energy spectra, mean energy, fluence, and energy fluence in the direction perpendicular to the MLC leaves and have been compared with the corresponding data using the well established Varian 80 leaf (MLC80) and Millennium M120 (M120 MLC) MLCs. Additionally, the impact of the tongue and groove design of the MLCs on dose has been characterized. RESULTS Calculated transmission values for the HD120 MLC are 1.25% and 1.34% in the central part of the field for the 6 and 15 MV beam, respectively. The corresponding ionization chamber measurements result in a transmission of 1.20% and 1.35%. Good agreement has been found for the comparison between transmission profiles resulting from MC simulations and film measurements. The simulated and measured values for the penumbra agreed within <0.5 mm for all field sizes, depths, and beam energies, and a good agreement has been found between the measured and the calculated dose distributions for the IMRT case. The total energy spectra are almost identical for the three MLCs. However, the mean energy, fluence and energy fluence are significantly different. Due to the different leaf widths of the MLCs, the shape of these distributions is different, each representing its leave structure. Due to the increase in width from the inner to the outer HD120 MLC leaves, the fluence and energy fluence clearly decrease below the outer leaves. The MLC80 and the M120 MLC resulted in an increase of the fluence and energy fluence compared with those resulted for the HD120 MLC. The dose reduction can exceed 20% compared with the dose of the open field due to the tongue and groove design of the HD120 MLC. CONCLUSIONS The HD120 MLC has been successfully implemented into the SMCP. Comparisons between MC calculations and measurements show very good agreement. The SMCP is now able to calculate accurate dose distributions for treatment plans using the HD120 MLC.


Physics in Medicine and Biology | 2010

Monte Carlo dose calculation improvements for low energy electron beams using eMC

M.K. Fix; D. Frei; W. Volken; H Neuenschwander; Ej Born; Peter Manser

The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.


Physics in Medicine and Biology | 2013

Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types

M.K. Fix; Joanna E. Cygler; D. Frei; W. Volken; H Neuenschwander; Ej Born; Peter Manser

The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.


Medical Physics | 2010

Comparison of monte carlo collimator transport methods for photon treatment planning in radiotherapy

D. Schmidhalter; Peter Manser; D. Frei; W. Volken; M.K. Fix

PURPOSE The aim of this work was a Monte Carlo (MC) based investigation of the impact of different radiation transport methods in collimators of a linear accelerator on photon beam characteristics, dose distributions, and efficiency. Thereby it is investigated if it is possible to use different simplifications in the radiation transport for some clinical situations in order to save calculation time. METHODS Within the Swiss Monte Carlo Plan, a GUI-based framework for photon MC treatment planning, different MC methods are available for the radiation transport through the collimators [secondary jaws and multileaf collimator (MLC)]: EGSnrc (reference), VMC++, and Pin (an in-house developed MC code). Additional nonfull transport methods were implemented in order to provide different complexity levels for the MC simulation: Considering collimator attenuation only, considering Compton scatter only or just the firstCompton process, and considering the collimators as totally absorbing. Furthermore, either a simple or an exact geometry of the collimators can be selected for the absorbing or attenuation method. Phasespaces directly above and dose distributions in a water phantom are analyzed for academic and clinical treatment fields using 6 and 15 MV beams, including intensity modulated radiation therapy with dynamic MLC. RESULTS For all MC transport methods, differences in the radial mean energy and radial energy fluence are within 1% inside the geometric field. Below the collimators, the energy fluence is underestimated for nonfull MC transport methods ranging from 5% for Compton to 100% for Absorbing. Gamma analysis using EGSnrc calculated doses as reference shows that the percentage of voxels fulfilling a 1% /1 mm criterion is at least 98% when using VMC++, Compton, or firstCompton transport methods. When using the methods Pin, Transmission, Flat-Transmission, Flat-Absorbing or Absorbing, the mean value of points fulfilling this criterion over all tested cases is 97%, 88%, 74%, 68%, or 65%, respectively. However, compared to EGSnrc calculations, the gain in efficiency is a factor of up to 10 for VMC++ and up to 48 for the absorbing method. CONCLUSIONS The results of this investigation suggest that it is an option to use a simple transport technique in the initial treatment planning process and use more accurate transport methods for the final dose calculation accepting longer calculation times.


Medical Physics | 2011

A virtual source model for Kilo-voltage cone beam CT: Source characteristics and model validation

Emiliano Spezi; W. Volken; D. Frei; M.K. Fix

PURPOSE The purpose of this investigation was to study the source characteristics of a clinical kilo-voltage cone beam CT unit and to develop and validate a virtual source model that could be used for treatment planning purposes. METHODS We used a previously commissioned full Monte Carlo model and new bespoke software to study the source characteristics of a clinical kilo-voltage cone beam CT (CBCT) unit. We identified the main particle sources, their spatial, energy and angular distribution for all the image acquisition presets currently used in our clinical practice. This includes a combination of two energies (100 and 120 kVp), two filters (neutral and bowtie), and eight different x-ray beam apertures. We subsequently built a virtual source model which we validated against full Monte Carlo calculations. RESULTS We found that the radiation output of the clinical kilo-voltage cone beam CT unit investigated in this study could be reproduced with a virtual model comprising of two sources (target and filtration cone) or three sources (target, filtration cone and bowtie filter) when additional filtration was used. With this model, we accounted for more than 97% of the photons exiting the unit. Each source in our model was characterised by a origin distribution in both X and Y directions, a fluence map, a single energy spectrum for unfiltered beams and a two dimensional energy spectrum for bowtie filtered beams. The percentage dose difference between full Monte Carlo and virtual source model based dose distributions was well within the statistical uncertainty associated with the calculations ( ± 2%, one standard deviation) in all cases studied. CONCLUSIONS The virtual source that we developed is accurate in calculating the dose delivered from a commercial kilo-voltage cone beam CT unit operating with routine clinical image acquisition settings. Our data have also shown that target, filtration cone, and bowtie filter sources needed to be all included in the model in order to accurately replicate the dose distribution from the clinical radiation beam.


Journal of Synchrotron Radiation | 2014

Combining Monte Carlo methods with coherent wave optics for the simulation of phase-sensitive X-ray imaging

Silvia Peter; Peter Modregger; M.K. Fix; W. Volken; D. Frei; Peter Manser; Marco Stampanoni

A framework combining wave-optics with Monte Carlo methods for numerical simulations of phase-sensitive X-ray imaging has been developed.


Medical Physics | 2014

Forward treatment planning for modulated electron radiotherapy (MERT) employing Monte Carlo methods

D. Henzen; Peter Manser; D. Frei; W. Volken; H Neuenschwander; Ej Born; Kristina Lössl; Daniel M. Aebersold; Marco Stampanoni; M.K. Fix

PURPOSE This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). METHODS As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. RESULTS The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V95% increased from 90% to 96% and V107% decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. CONCLUSIONS MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.


Medical Physics | 2014

Monte Carlo based beam model using a photon MLC for modulated electron radiotherapy

D. Henzen; Peter Manser; D. Frei; W. Volken; H Neuenschwander; Ej Born; Daniel Vetterli; Cécile Chatelain; Marco Stampanoni; M.K. Fix

PURPOSE Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). METHODS This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. RESULTS For 15 × 34, 5 × 5, and 2 × 2 cm(2) fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two-dimensional dose comparisons, the differences between calculations and measurements are generally within 2% of the maximal dose value or 2 mm DTA. CONCLUSIONS The results of the dose comparisons suggest that the developed beam model is suitable to accurately reconstruct photon MLC shaped electron beams for a Clinac 23EX and a TrueBeam linac. Hence, in future work the beam model will be utilized to investigate the possibilities of MERT using the photon MLC to shape electron beams.


Medical Physics | 2014

Beamlet based direct aperture optimization for MERT using a photon MLC

D. Henzen; Peter Manser; D. Frei; W. Volken; H Neuenschwander; Ej Born; A Joosten; Kristina Lössl; Daniel M. Aebersold; Cécile Chatelain; Marco Stampanoni; M.K. Fix

PURPOSE A beamlet based direct aperture optimization (DAO) for modulated electron radiotherapy (MERT) using photon multileaf collimator (pMLC) shaped electron fields is developed and investigated. METHODS The Swiss Monte Carlo Plan (SMCP) allows the calculation of dose distributions for pMLC shaped electron beams. SMCP is interfaced with the Eclipse TPS (Varian Medical Systems, Palo Alto, CA) which can thus be included into the inverse treatment planning process for MERT. This process starts with the import of a CT-scan into Eclipse, the contouring of the target and the organs at risk (OARs), and the choice of the initial electron beam directions. For each electron beam, the number of apertures, their energy, and initial shape are defined. Furthermore, the DAO requires dose-volume constraints for the structures contoured. In order to carry out the DAO efficiently, the initial electron beams are divided into a grid of beamlets. For each of those, the dose distribution is precalculated using a modified electron beam model, resulting in a dose list for each beamlet and energy. Then the DAO is carried out, leading to a set of optimal apertures and corresponding weights. These optimal apertures are now converted into pMLC shaped segments and the dose calculation for each segment is performed. For these dose distributions, a weight optimization process is launched in order to minimize the differences between the dose distribution using the optimal apertures and the pMLC segments. Finally, a deliverable dose distribution for the MERT plan is obtained and loaded back into Eclipse for evaluation. For an idealized water phantom geometry, a MERT treatment plan is created and compared to the plan obtained using a previously developed forward planning strategy. Further, MERT treatment plans for three clinical situations (breast, chest wall, and parotid metastasis of a squamous cell skin carcinoma) are created using the developed inverse planning strategy. The MERT plans are compared to clinical standard treatment plans using photon beams and the differences between the optimal and the deliverable dose distributions are determined. RESULTS For the idealized water phantom geometry, the inversely optimized MERT plan is able to obtain the same PTV coverage, but with an improved OAR sparing compared to the forwardly optimized plan. Regarding the right-sided breast case, the MERT plan is able to reduce the lung volume receiving more than 30% of the prescribed dose and the mean lung dose compared to the standard plan. However, the standard plan leads to a better homogeneity within the CTV. The results for the left-sided thorax wall are similar but also the dose to the heart is reduced comparing MERT to the standard treatment plan. For the parotid case, MERT leads to lower doses for almost all OARs but to a less homogeneous dose distribution for the PTV when compared to a standard plan. For all cases, the weight optimization successfully minimized the differences between the optimal and the deliverable dose distribution. CONCLUSIONS A beamlet based DAO using multiple beam angles is implemented and successfully tested for an idealized water phantom geometry and clinical situations.

Collaboration


Dive into the W. Volken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge