Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W.X. Wang is active.

Publication


Featured researches published by W.X. Wang.


Physics of Plasmas | 2006

Gyro-kinetic simulation of global turbulent transport properties in tokamak experiments

W.X. Wang; Zhihong Lin; W. M. Tang; W. W. Lee; Stephane Ethier; Jerome L. V. Lewandowski; G. Rewoldt; T. S. Hahm; J. Manickam

A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.


Physics of Plasmas | 2010

Nonlinear flow generation by electrostatic turbulence in tokamaks

W.X. Wang; P. H. Diamond; T. S. Hahm; Stephane Ethier; G. Rewoldt; W. M. Tang

Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEMs). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wavenumber spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E×B shear. The ITG turbulence driven “intrinsic” torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroi...


Physics of Plasmas | 2007

Nonlocal properties of gyrokinetic turbulence and the role of E×B flow shear

W.X. Wang; T. S. Hahm; W. W. Lee; G. Rewoldt; J. Manickam; W. M. Tang

The nonlocal physics associated with turbulent transport is investigated using global gyrokinetic simulations with realistic parameters in shaped tokamak plasmas. This study focuses on the turbulence spreading through a transport barrier characterized by an equilibrium E×B shear layer. It is found that an E×B shear layer with an experimentally relevant level of the shearing rate can significantly reduce, and sometimes even block, turbulence spreading by reducing the spreading extent and speed. This feature represents a new aspect of transport barrier dynamics. The key quantity in this process is identified as the local maximum shearing rate ∣ωEmax∣, rather than the amplitude of the radial electric field. These simulation studies also extend to radially local physics with respect to the saturation of the ion temperature gradient (ITG) instability, and show that the nonlinear toroidal couplings are the dominant k-space activity in the ITG dynamics, which cause energy transfer to longer wavelength damped mod...


Physics of Plasmas | 2006

Nonlocal neoclassical transport in tokamak and spherical torus experiments

W.X. Wang; G. Rewoldt; W. M. Tang; F. L. Hinton; J. Manickam; L. Zakharov; R. B. White; S.M. Kaye

Large ion orbits can produce nonlocal neoclassical effects on ion heat transport, the ambipolar radial electric field, and the bootstrap current in realistic toroidal plasmas. Using a global δf particle simulation, it is found that the conventional local, linear gradient-flux relation is broken for the ion thermal transport near the magnetic axis. With regard to the transport level, it is found that details of the ion temperature profile determine whether the transport is higher or lower when compared with the predictions of standard neoclassical theory. Particularly, this nonlocal feature is suggested to exist in the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)], being consistent with NSTX experimental evidence. It is also shown that a large ion temperature gradient can increase the bootstrap current. When the plasma rotation is taken into account, the toroidal rotation gradient can drive an additional parallel flow for the ions and the...


Physics of Plasmas | 2015

Intrinsic torque reversals induced by magnetic shear effects on the turbulence spectrum in tokamak plasmasa)

Z. X. Lu; W.X. Wang; P. H. Diamond; G. R. Tynan; Stephane Ethier; C. Gao; J. E. Rice

Intrinsic torque, which can be generated by turbulent stresses, can induce toroidal rotation in a tokamak plasma at rest without direct momentum injection. Reversals in intrinsic torque have been inferred from the observation of toroidal velocity changes in recent lower hybrid current drive (LHCD) experiments. This work focuses on understanding the cause of LHCD-induced intrinsic torque reversal using gyrokinetic simulations and theoretical analyses. A new mechanism for the intrinsic torque reversal linked to magnetic shear ( s) effects on the turbulence spectrum is identified. This reversal is a consequence of the ballooning structure at weak s. Based on realistic profiles from the Alcator C-Mod LHCD experiments, simulations demonstrate that the intrinsic torque reverses for weak s discharges and that the value of scrit is consistent with the experimental results scritexp≈0.2∼0.3 [Rice et al., Phys. Rev. Lett. 111, 125003 (2013)]. The consideration of this intrinsic torque feature in our work is imp...


Physics of Plasmas | 2010

Drift-kinetic simulation of neoclassical transport with impurities in tokamaks

R. A. Kolesnikov; W.X. Wang; F. L. Hinton; G. Rewoldt; W. M. Tang

Plasmas in modern tokamak experiments contain a significant fraction of impurity ions in addition to the main deuterium background ions. A new multiple ion-species δf particle simulation capability has been developed to self-consistently study the nonlocal effects of impurities on neoclassical transport in toroidal plasmas. A new algorithm for an unlike-particle collision operator, including test-particle and conserving field-particle parts, is described. Effects of the carbon impurity on the main deuterium species heat flux as well as an ambipolar radial electric field in a National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)] configuration were studied. A difference between carbon poloidal rotation found from simulation and from conventional theoretical estimates has been investigated and was identified to be a nonlocal finite orbit effect. In the case of large-aspect ratio tokamak configurations with steep toroidal flow profiles, we propose a...


Computational Science & Discovery | 2008

Nonlinear turbulent transport in magnetic fusion plasmas

W. W. Lee; Stephane Ethier; R Kolesnikov; W.X. Wang; W. M. Tang

For more than a decade, the study of microturbulence driven by ion temperature gradient (ITG) drift instabilities in tokamak devices has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. An important impetus for this avenue of research was the discovery of the radial streamers associated with the ITG modes in the early 1990s using the particle-in-cell (PIC) simulation method. Subsequently, ITG simulations using codes with increasing realism have been made possible by the dramatic increase in computing power. Notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to gyroBohm scaling with increased device size. In this paper, we will describe an interesting nonlinear physical process, as well as the resulting turbulent transport, that is associated with the interactions between the nonlinear parallel acceleration of the ions and the zonal flow modes. This study was carried out by utilizing a fully parallelized three-dimensional PIC code in global toroidal geometry on the most advanced, modern, massively parallel supercomputers.


Journal of Physics: Conference Series | 2006

Gyrokinetic particle simulation of fusion plasmas: path to petascale computing

W. W. Lee; Stephane Ethier; W.X. Wang; W. M. Tang; Scott Klasky

Gyrokinetic particle simulation of fusion plasmas for studying turbulent transport on state-of-theart computers has a long history of important scientific discoveries. The primary examples are: (i) the identification of ion temperature gradient (ITG) drift turbulence as the most plausible process responsible for the thermal transport observed in tokamak experiments; (ii) the reduction of such transport due to the presence of zonal flows; (iii) the confinement scaling trends associated with size of the plasma and also with the ionic isotope species. With the availability of terascale computers in recent years, we have also been able to carry out simulations with improved physics fidelity using experimentally relevant parameters. Computationally, we have demonstrated that our lead Particle-in- Cell (PIC) code, the Gyrokinetic Turbulence Code (GTC), is portable, efficient, and scalable on various MPP platforms. Convergence studies with unprecedented phase-space resolution have also been carried out. Since petascale resources are expected to be available in the near future, we have also engaged in developing better physics models and more efficient numerical algorithms to take advantage of this exciting opportunity. For the near term, we are interested in understanding some basic physics issues related to burning plasmas experiments in International Thermonuclear Experimental Reactor (ITER) - a multi-billion dollar device to be constructed over the next decade. Our long range goal is to carry out integrated simulations for ITER plasmas for a wide range of temporal and spatial scales, including high-frequency short-wavelength wave heating, low-frequency meso-scale transport, and low-frequency large scale magnetohydrodynamic (MHD) physics on these computers.


Physics of Plasmas | 2015

Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

W.X. Wang; Stephane Ethier; Y. Ren; S. Kaye; J. Chen; Edward A. Startsev; Z. Lu; Zhenqian Li

Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no “transport shortfall”). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of ...


Physics of Plasmas | 2012

Nature of energetic ion transport by ion temperature gradient driven turbulence and size scaling

J. Chowdhury; W.X. Wang; Stephane Ethier; J. Manickam; R. Ganesh

Energetic ion transport has been studied using a global gyrokinetic nonlinear simulation in the presence of ion temperature gradient (ITG) driven turbulence. The measured transport and its nature show dependence on the system size of the tokamak expressed as the ratio of plasma minor radius (a) to the thermal ion Larmor radius (ρi). It increases with system size initially and then tends to saturate at larger system size. The nature of transport, on the other hand, exhibits nondiffusive character for smaller system size which eventually becomes diffusive one as the system size becomes larger.

Collaboration


Dive into the W.X. Wang's collaboration.

Top Co-Authors

Avatar

Stephane Ethier

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. W. Lee

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. Rewoldt

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

S.M. Kaye

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

William Tang

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Manickam

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. H. Diamond

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge