Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Z. Rymer is active.

Publication


Featured researches published by W. Z. Rymer.


Journal of Neurology, Neurosurgery, and Psychiatry | 1995

Joint dependent passive stiffness in paretic and contralateral limbs of spastic patients with hemiparetic stroke.

J.D. Given; Julius P. A. Dewald; W. Z. Rymer

Torque-angle relations at the elbow and ankle joints of relaxed normal controls and patients with hemiparetic stroke were compared. Low velocity flexion/hold/extension angular perturbations were applied to the joint under examination. The resulting torque-angle profiles described a hysteresis loop with similar slopes during the extension and flexion stages but separated by a vertical torque offset. Torque-angle responses obtained in the absence of significant muscle activation, as recorded by surface electromyographic activity, were designated as passive. Elbow passive stiffness estimates were calculated from the slope of the torque-angle response during the flexion stage of the perturbation. The elbow torque-angle plots exhibited linear passive stiffness with magnitude significantly lower than the passive stiffness of the ankle in both normal subjects and spastic patients. Changing ramp velocity had no significant effect on the passive torque-angle hysteresis loop at the elbow. A comparison of the torque-angle relations between hemiparetic spastic and normal control arms showed no significant differences in passive stiffness. Furthermore, no significant differences were found between paretic and contralateral upper limbs of a given hemiparetic subject. By contrast, significant differences in the torque-angle hysteresis loop were present between the paretic and contralateral ankles in all hemiparetic patients tested. These differences were more significant during dorsiflexion, and therefore seem to be related to preferential changes in mechanical properties of plantar flexor muscles. It is hypothesised that the differences in the torque-angle hysteresis loop between elbow and angle joints are related primarily to the larger amount of connective tissue in the calf muscles, as well as to a larger total physiological cross sectional area of calf muscles compared with elbow muscles. It is further hypothesized that the preferential increases in passive stiffness at the ankle in spastic legs result from immobilisation induced changes in muscle connective tissue, which are most prominent in muscles with predominantly slow-twitch fibres (such as soleus). Connective tissue surrounding such slow twitch muscle fibres have been shown to be more sensitive to immobilisation than those in fast twitch muscle. The functional, pathophysiological, and clinical implications of our findings are reviewed.


Experimental Neurology | 1987

Absence of stretch reflex gain enhancement in voluntarily activated spastic muscle.

Wynne A. Lee; Ann Boughton; W. Z. Rymer

Static and dynamic stiffnesses of voluntarily activated elbow muscles were compared in spastic and contralateral arms of 15 subjects with spastic hemiparesis. Stiffnesses were estimated from the positional deflections induced by applying load perturbations to each forearm. In 11/15 subjects (73%), stiffness were comparable on the two sides. In the remaining 4/15 subjects (27%), stiffness were consistently greater on the spastic side, however, EMG recordings from these spastic muscles were of much smaller amplitude than those of the contralateral muscles, indicating that this increase was probably caused by changes in the mechanical properties of elbow muscles, rather than by stretch reflex enhancement. We conclude that for voluntarily activated muscles of spastic hemiparetic subjects, reflex stiffness (and presumably stretch reflex gain), of spastic and contralateral limbs is not significantly different. These findings impose important constraints upon theories attempting to explain spastic hypertonia, and they also provide guidelines for clinical quantification of spasticity.


IEEE Transactions on Biomedical Engineering | 1994

Muscle stiffness during transient and continuous movements of cat muscle: perturbation characteristics and physiological relevance

Robert F. Kirsch; Djordje Boskov; W. Z. Rymer

Continuous stochastic position perturbations are an attractive alternative to transient perturbations in muscle and reflex studies because they allow efficient characterization of system properties. However, the relevance of the results obtained from stochastic perturbations remains unclear because they may induce a state change in muscle properties. The authors addressed this concern by comparing the force and stiffness responses of isolated muscles of the decerebrate cat elicited by stochastic perturbations to those evoked by step stretches of similar amplitudes. Muscle stiffness during stochastic perturbations was found to be predominantly linear and elastic in nature for a given operating point, showing no evidence of instantaneous amplitude-dependent nonlinearities, even during large movements. In contrast, force responses evoked by step stretches were found to be mainly viscous in nature and nonlinear for larger stretches, with only a small maintained (elastic) component. Stiffness magnitude decreased with displacement amplitude for both stochastic and step perturbations. The authors results are largely consistent with the crossbridge theory of muscle contraction, indicating that transient and continuous displacements evoke different, although functionally relevant, aspects of muscle behavior. These differences have several implications for the neural control of posture and movement, and for the design of perturbations appropriate for its study.<<ETX>>


IEEE Transactions on Biomedical Engineering | 1991

A quantitative analysis of pendular motion of the lower leg in spastic human subjects

David C. Lin; W. Z. Rymer

Gravity-induced oscillations of the lower leg in normal and spastic subjects were examined with a view towards evaluating a clinical test of spasticity called the pendulum test. For passive limb motion (in which no reflex excitation occurred), a second-order linear model did not provide an adequate description of the motion for either spastic or normal legs. System equations including nonlinear mechanical properties simulating asymmetries in the swing and amplitude dependent variations in stiffness and damping provided a more accurate description. For spastic limb motion (in which reflex excitation did occur) accurate simulation required components accounting for abnormal reflex activation, coinciding with the time course of EMG activation. These included increased stiffness and damping with their gains related to reflex EMG magnitude, and changes in the rest length of the stiffness. Comparison of numerical with experimental data showed that the nonlinear model simulated the motion accurately, with the variance accounted for usually exceeding 90%.<<ETX>>


Brain Research | 1988

Increased inhibitory effects on close synergists during muscle fatigue in the decerebrate cat.

L. Hayward; D. Breitbach; W. Z. Rymer

We compared the magnitude of reflex inhibition induced in the soleus muscle by contraction or stretch of the medial gastrocnemius (MG), before, during, and after electrically induced fatigue of the MG. Our findings are that MG fatigue is accompanied by a substantial increase in soleus inhibition, which then recovers with MG rest. This increased inhibition may explain, at least in part, the decline in motoneuron discharge rate that has been described in fatiguing human muscle.


Experimental Brain Research | 1989

Wipe and flexion withdrawal reflexes display different EMG patterns prior to movement onset in the spinalized frog

Judith L. Schotland; Wynne A. Lee; W. Z. Rymer

SummaryWe investigated the hypotheses (1) that the initial flexion part of the wipe reflex elicited in the spinalized frog has the same EMG pattern for wipes to different target locations (Berkinblit et al. 1986), thereby reducing the complexity of the control of this task, and (2) that this initial flexion is the same as occurs in the flexion withdrawal reflex (Easton 1972). The activities of seven muscles of the hindlimb of the spinal frog were recorded via intramuscular electromyograms (EMGs) during the wipe reflex to two target locations and during the flexion withdrawal reflex. The EMGs were analyzed during the interval between stimulus placement and movement onset for mean integrated EMG and duration from EMG onset to movement onset. This analysis revealed significant differences (p<0.0001) in the EMG patterns that preceded the initial flexion posture for all three movements. These findings suggest that the spinal circuitry coordinating the initial flexion part of the wipe reflex to different target locations and the flexion withdrawal reflex may not be uniformly shared.


Experimental Brain Research | 1991

Alterations in motoneuron properties induced by acute dorsal spinal hemisection in the decerebrate cat

J. S. Carp; R. K. Powers; W. Z. Rymer

SummaryUsing intracellular recording techniques, we studied the response characteristics of two separate populations of triceps surae motoneurons in unanesthetized decerebrate cats, recorded before and after low thoracic hemisection of the spinal cord. In each preparation, we studied the response properties of one group of motoneurons and the protocol was then repeated for a separate group, immediately following the dorsal hemisection. In each group, we examined both the minimum firing rates of motoneurons during intracellular current injection and a range of cellular properties, including input resistance, rheobase current and afterhyperpolarization time course and magnitude. Although earlier studies from this laboratory have shown substantial reductions in minimum firing rate in reflexively active motoneurons in the hemisected decerebrated preparation, the response of motoneurons to intracellular current injection in the current preparation proved to be quite different. Minimum firing rates were either normal or even somewhat higher in the post-lesion group, while the time course of the afterhyperpolarization was shortened. Moreover, these effects were not evenly distributed across the motoneuron pool. The rate effect was most evident in motoneurons with higher conduction velocity, while the afterhyperpolarization effect occurred predominantly in motoneurons with lower conduction velocity. Neither of these effects could be accounted for by lesion-induced changes in other cellular properties. We conclude that tonically active neurons with descending axons traversing dorsolateral white matter may influence both the discharge characteristics and membrane properties of spinal motoneurons in novel ways, presumably by modifying voltage or calcium activated motoneuronal conductances. The previously described reactions in the the firing rate of motoneurons after such lesions appear to be mediated by different means, perhaps by alterations in synaptic input from segmental interneurons.


Experimental Neurology | 1991

Selective decrease of small sensory neurons in lumbar dorsal root ganglia labeled with horseradish peroxidase after Nd:YAG laser irradiation of the tibial nerve in the rat

Ursula Wesselmann; Shien-Fong Lin; W. Z. Rymer

Recent electrophysiological evidence indicates that Q-switched Nd:YAG laser irradiation might have selective effects on neural impulse transmission in small slow conducting sensory nerve fibers as compared to large diameter afferents. In an attempt to clarify the ultimate fate of sensory neurons after laser application to their peripheral axons, we have used horseradish peroxidase (HRP) as a cell marker to retrogradely label sensory neurons innervating the distal hindlimb in the rat. Pulsed Nd:YAG laser light was applied to the tibial nerve at pulse energies of 70 or 80 mJ/pulse for 5 min in experimental rats. Seven days later HRP was applied to the left (laser-treated) and to the contralateral (untreated) tibial nerve proximal to the site of laser irradiation. In control animals the numbers of HRP-labeled dorsal root ganglion cells were not significantly different between the right and the left side. In contrast, after previous laser irradiation labeling was always less on the laser-treated side (2183 +/- 513 cells, mean +/- SEM) as compared to the untreated side (3937 +/- 225). Analysis of the dimensions of labeled cells suggested that the reduction of labeled cells on the laser-treated side was mainly due to a deficit in small sensory neurons. Since the conduction velocity of nerve fibers is related to the size of their somata, our histological data imply that laser light selectively affects retrograde transport mechanisms for HRP in slow conducting sensory nerve fibers.


Neuroscience Letters | 1989

Evidence of shared, direct input to motoneurons supplying synergist muscles in humans

R. K. Powers; S.Vanden Noven; W. Z. Rymer

Cross-correlation techniques were used to test for the presence of shared, direct input to motoneurons innervating different synergist elbow flexor muscles in man. Motor unit activity was recorded intramuscularly from two elbow flexor muscles during steady isometric elbow flexion in normal and paretic subjects. To increase the probability of detecting weak synchrony, one of the intramuscular needles was positioned to record multiunit activity. Significant correlogram peaks were obtained in 25/57 runs in normal subjects, and the features of the correlograms were similar to those previously reported based on cross-correlation of two single units within the same muscle. Further, the characteristics of discharge synchrony measured in paretic stroke patients are consistent with other reports on the effects of stroke on synchrony among motoneurons belonging to the same pool, i.e. narrow correlogram peaks were rare in paretic subjects and significant correlogram peaks often had longer than normal durations.


Experimental Brain Research | 1988

Disturbances of motor output in a cat hindlimb muscle after acute dorsal spinal hemisection

M. J. Blaschak; R. K. Powers; W. Z. Rymer

SummaryForce and electromyogram (EMG) responses of the medial gastrocnemius muscle were assessed during isometric contractions in 8 decerebrate cat preparations, before and after acute dorsal hemisection of the spinal cord at the T12 level. The measures derived included the relation between static force and mean rectified EMG, the EMG amplitude distribution, EMG power spectral density, and force power spectral density. Our findings were that the spinal lesion induced modifications in the shape of the EMG amplitude distribution, a substantial increase in mean rectified EMG per unit force, and increases in EMG spectral power and force spectral power over a broad band of frequencies. In 7/8 preparations, there was disproportionate enhancement of EMG spectral power below 40 Hz, with a commensurate reduction in the EMG mean power frequency (MPF) in 6 of these 7 cases. Recordings of motoneuron discharge from 9 decerebrate preparations taken before and after the spinal hemisection revealed that the lesion-induced changes in EMG and force power spectra were accompanied by lower mean discharge rates, and by a compression of the range of recruitment force. These changes in motoneuron rate and recruitment were probably responsible for the changes in EMG and force measures, especially for the relative increase in low-frequency EMG power. If these acute disturbances of motoneuron rate and recruitment persist in chronic human neurological disorders, they represent an important and largely unrecognized source of muscular weakness and increased fatigability.

Collaboration


Dive into the W. Z. Rymer's collaboration.

Top Co-Authors

Avatar

R. K. Powers

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. F. Miller

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. D. Paul

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Lin

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge