Wade Ray Waters
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wade Ray Waters.
Zoonoses and Public Health | 2009
Mitchell V. Palmer; Tyler C. Thacker; Wade Ray Waters
Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis in domestic livestock and the cause for many faltering bovine tuberculosis eradication programmes. One approach in dealing with wildlife reservoirs of disease is to interrupt inter‐species and intraspecies transmission through vaccination of deer or cattle. To evaluate the efficacy of BCG vaccination in white‐tailed deer, 35 deer were assigned to one of three groups; one s.c. dose of 107 CFU of M. bovis BCG Pasteur (n = 12); 1 s.c. dose of 107 CFU of M. bovis BCG Danish (n = 11); or unvaccinated deer (n = 12). After vaccination, deer were inoculated intratonsilarly with virulent M. bovis. Lesion severity scores of the medial retropharyngeal lymph node, as well as all lymph nodes combined, were reduced in vaccinated deer compared to unvaccinated deer. BCG Danish vaccinated deer had no late stage granulomas characterized by coalescent caseonecrotic granulomas containing numerous acid‐fast bacilli compared to BCG Pasteur vaccinated or unvaccinated deer where such lesions were present. Both BCG strains were isolated as late as 250 days after vaccination from deer that were vaccinated but not challenged. In white‐tailed deer, BCG provides protection against challenge with virulent M. bovis. Issues related to vaccine persistence, safety and shedding remain to be further investigated.
Zoonoses and Public Health | 2010
Mitchell V. Palmer; Tyler C. Thacker; Wade Ray Waters; Suelee Robbe-Austerman; S. M. Lebepe-Mazur; N. B. Harris
Mycobacterium bovis is the cause of tuberculosis in cattle and a serious zoonotic pathogen, most commonly contracted through consumption of unpasteurized dairy products. To control this zoonosis, many countries have developed bovine tuberculosis eradication programmes. Although relatively successful, efforts are hindered in many regions by spillover from wildlife reservoirs of M. bovis to cattle. Such is the case in the United States where spillover of M. bovis from free‐ranging white‐tailed deer to cattle occurs. One approach to control such inter‐species transmission is vaccination of wildlife. The live, attenuated human vaccine M. bovis Bacillus Calmette‐Guérin (BCG) has been shown to reduce disease severity in white‐tailed deer; however, vaccine persistence within tissues has also been noted. Consumption of venison containing BCG by hunters may present a public health concern as BCG exposure, although unlikely to cause disease, could cause false positive tuberculin skin test results. To examine BCG persistence further, 42 white‐tailed deer were vaccinated orally or subcutaneously (SC) with BCG Danish. Three deer from each group were killed and examined at periods ranging from 2 weeks to 11 months after vaccination. BCG was recovered from orally vaccinated deer as late as 3 months after vaccination, while BCG persisted in SC vaccinated deer for as long as 9 months. At no time was BCG isolated from meat; however, prolonged persistence was seen in lymphoid organs. Although vaccine persistence was noted, especially in SC vaccinated deer, the distribution of culture‐positive tissues makes human exposure through consumption unlikely.
BMC Veterinary Research | 2013
Tyler C. Thacker; Suelee Robbe-Austerman; Beth Harris; Mitchell V. Palmer; Wade Ray Waters
BackgroundMycobacteria other than M. bovis may interfere with current bovine tuberculosis diagnostic tests resulting in false positive test results. As the prevalence of M. bovis decreases in the United States, interference from other mycobacteria play an increasingly important role in preventing the eradication of M. bovis. To identify mycobacteria other than M. bovis that may be interfering with current diagnostic tests, a retrospective study was performed to identify mycobacteria isolated from clinical tissues at the National Veterinary Services Laboratories between 1 January 2004 and 9 October 2011.ResultsDuring the study period, 2,366 mycobacteria other than M. bovis were isolated from samples submitted for clinical diagnosis of M. bovis. Fifty-five mycobacterial species were isolated during this time period. In cattle, M. avium complex, M. fortuitum/fortuitum complex, M. smegmatis, M. kansasii, and M. terrae complex were the predominate species other than M. bovis isolated from tissues submitted for culture. Mycobacteria other than M. bovis isolated from deer were predominantly M. avium complex, M. terrae/terrae complex, and M. fortuitum/fortuitum complex.ConclusionsThese data provide information characterizing the species and relative prevalence of mycobacteria other than M. bovis that may interfere with current diagnostic tests.
Journal of Comparative Pathology | 2015
Mitchell V. Palmer; Tyler C. Thacker; Wade Ray Waters
Mycobacterium bovis is the cause of tuberculosis in most animal species including cattle and is a serious zoonotic pathogen. In man, M. bovis infection can result in disease clinically indistinguishable from that caused by Mycobacterium tuberculosis, the cause of most human tuberculosis. Regardless of host, the typical lesion induced by M. bovis or M. tuberculosis is the tuberculoid granuloma. Tuberculoid granulomas are dynamic structures reflecting the interface between host and pathogen and, therefore, pass through various morphological stages (I to IV). Using a novel in-situ hybridization assay, transcription of various cytokine and chemokine genes was examined qualitatively and quantitatively using image analysis. In experimentally infected cattle, pulmonary granulomas of all stages were examined 150 days after aerosol exposure to M. bovis. Expression of mRNA encoding tumour necrosis factor (TNF)-α, transforming growth factor-β, interferon (IFN)-γ, interleukin (IL)-17A, IL-16, IL-10, CXCL9 and CXCL10 did not differ significantly between granulomas of different stages. However, relative expression of the various cytokines was characteristic of a Th1 response, with high TNF-α and IFN-γ expression and low IL-10 expression. Expression of IL-16 and the chemokines CXCL9 and CXCL10 was high, suggestive of granulomas actively involved in T-cell chemotaxis.
BMC Research Notes | 2014
Elise A. Lamont; João Ribeiro-Lima; Wade Ray Waters; Tyler C. Thacker; Srinand Sreevatsan
BackgroundEarly and unambiguous detection of bovine tuberculosis (bTB), a significant disease of cattle worldwide, is necessary to control the spread of infection to other animals and humans. Current testing strategies are laborious, time consuming and heavily reliant on host responses that do not distinguish bTB from other mycobacteria. We report the presence of a pathogen signature, liparabinomannan (LAM), as a potential biomarker for bTB infection.FindingsFifty-five animals (uninfected [n = 33], bTb [n = 10] and exposed cases [n = 12]) from a well characterized bovine serum repository were screened for the presence of LAM using a commercially available ELISA. Analysis showed that LAM had a sensitivity of 100% and a specificity of 91.7% for bTB detection (bTB positive versus bTB exposed animals).ConclusionLAM detection easily separated bTB infected animals from bTB exposed and negative controls. We propose that pathogen related markers, such as LAM, should be included with current testing strategies as a battery diagnostic for bTB.
American Journal of Veterinary Research | 2017
Sylvia I. Wanzala; Mitchell V. Palmer; Wade Ray Waters; Tyler C. Thacker; Michelle Carstensen; Dominic A. Travis; Srinand Sreevatsan
OBJECTIVE To develop a noninvasive biomarker-based detection system specific for Mycobacterium bovis for monitoring infection in wild animals. SAMPLE Serum samples from 8 experimentally infected yearling white-tailed deer (Odocoileus virginianus) and 3 age-matched control deer and from 393 Minnesota Department of Natural Resources hunter-harvested white-tailed deer in northwest Minnesota. PROCEDURES 8 yearling deer were inoculated with 2 × 108 CFUs of virulent M bovis strain 1315 (day 0), and sera were obtained on days 0, 19, 48, and 60; sera were obtained from 3 uninoculated control deer on those same days. Sera from these deer and 9 M bovis-positive hunter-harvested deer were tested for 3 Mycobacterium-specific biomarkers (MB1895c, MB2515c, and polyketide synthase 5) by use of an indirect ELISA. That same ELISA was used to test sera obtained from 384 exposed noninfected deer in northwest Minnesota from 2007 through 2010, concurrent with an outbreak of tuberculosis involving cattle and deer in that region. RESULTS ELISA results revealed that tuberculosis infection could be detected as early as 48 days after inoculation in experimentally infected deer. Results for 384 deer sera revealed that prevalence of tuberculosis decreased over the 4-year period. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the prevalence of tuberculosis in Minnesota deer decreased after 2009 but tuberculosis may have persisted (as subclinical disease) at extremely low levels, as indicated by the presence of low concentrations of circulating biomarkers. Biomarker-based diagnostic tests may offer a specific approach for early identification of M bovis infection.
Frontiers in Veterinary Science | 2018
Syeda A. Hadi; Wade Ray Waters; Mitchell V. Palmer; Konstantin P. Lyashchenko; Srinand Sreevatsan
Objective: To evaluate a high-resolution method to identify pathogen-specific biomarkers in serum of calves infected with Mycobacterium bovis. Methods: Serum samples from four calves infected with M. bovis were collected before and after infection at weeks 9, 14, 15, 31, and 36. Immune-complex-associated mycobacterial antigens in the serum were enriched using an immunochromatography method termed, dual path platform (DPP). All regions of antigen capture zones, that consisted of monospecific rabbit polyclonal antibodies raised against M. tuberculosis lysates, on DPP strips were excised and analyzed by multidimensional proteomics. The resulting proteins were then passed through 4 rigorous peptide quality filters-false-hits, decoys, non-M. tuberculosis complex proteins were all removed followed by individual quality check of those remaining. Peptides were then checked on NCBIs BLASTp for M. tuberculosis complex specificity. Results: Proteins in 2 of the animals passed the multipronged-highly stringent peptide quality analysis. Animal#54 had 7 unique M. tuberculosis complex proteins at week 14 post-infection, while animal#56 had 4 at week 36 post-infection along with 1 immunoglobulin. Conclusion: M. tuberculosis complex -specific peptides identified in this study were identified in 2 animals and at 2 separate time points post infection. Further studies with better enrichment protocols and using larger sample sizes and replications are required to develop a TB-specific diagnostic tool for bovine tuberculosis.
Vaccine | 2007
Mitchell V. Palmer; Tyler C. Thacker; Wade Ray Waters
Journal of Comparative Pathology | 2014
Wade Ray Waters; Tyler C. Thacker; Jeffrey T. Nelson; D.M. DiCarlo; Mayara F. Maggioli; R. Greenwald; J. Esfandiari; K.P. Lyashchenko; Mitchell V. Palmer
Archive | 2004
Wade Ray Waters; Mitchell V. Palmer; Frank C. Minion