Wade Trappe
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wade Trappe.
mobile ad hoc networking and computing | 2005
Wenyuan Xu; Wade Trappe; Yanyong Zhang; Timothy Wood
Wireless networks are built upon a shared medium that makes it easy for adversaries to launch jamming-style attacks. These attacks can be easily accomplished by an adversary emitting radio frequency signals that do not follow an underlying MAC protocol. Jamming attacks can severely interfere with the normal operation of wireless networks and, consequently, mechanisms are needed that can cope with jamming attacks. In this paper, we examine radio interference attacks from both sides of the issue: first, we study the problem of conducting radio interference attacks on wireless networks, and second we examine the critical issue of diagnosing the presence of jamming attacks. Specifically, we propose four different jamming attack models that can be used by an adversary to disable the operation of a wireless network, and evaluate their effectiveness in terms of how each method affects the ability of a wireless node to send and receive packets. We then discuss different measurements that serve as the basis for detecting a jamming attack, and explore scenarios where each measurement by itself is not enough to reliably classify the presence of a jamming attack. In particular, we observe that signal strength and carrier sensing time are unable to conclusively detect the presence of a jammer. Further, we observe that although by using packet delivery ratio we may differentiate between congested and jammed scenarios, we are nonetheless unable to conclude whether poor link utility is due to jamming or the mobility of nodes. The fact that no single measurement is sufficient for reliably classifying the presence of a jammer is an important observation, and necessitates the development of enhanced detection schemes that can remove ambiguity when detecting a jammer. To address this need, we propose two enhanced detection protocols that employ consistency checking. The first scheme employs signal strength measurements as a reactive consistency check for poor packet delivery ratios, while the second scheme employs location information to serve as the consistency check. Throughout our discussions, we examine the feasibility and effectiveness of jamming attacks and detection schemes using the MICA2 Mote platform.
acm/ieee international conference on mobile computing and networking | 2008
Suhas Mathur; Wade Trappe; Narayan B. Mandayam; Chunxuan Ye; Alex Reznik
Securing communications requires the establishment of cryptographic keys, which is challenging in mobile scenarios where a key management infrastructure is not always present. In this paper, we present a protocol that allows two users to establish a common cryptographic key by exploiting special properties of the wireless channel: the underlying channel response between any two parties is unique and decorrelates rapidly in space. The established key can then be used to support security services (such as encryption) between two users. Our algorithm uses level-crossings and quantization to extract bits from correlated stochastic processes. The resulting protocol resists cryptanalysis by an eavesdropping adversary and a spoofing attack by an active adversary without requiring an authenticated channel, as is typically assumed in prior information-theoretic key establishment schemes. We evaluate our algorithm through theoretical and numerical studies, and provide validation through two complementary experimental studies. First, we use an 802.11 development platform with customized logic that extracts raw channel impulse response data from the preamble of a format-compliant 802.11a packet. We show that it is possible to practically achieve key establishment rates of ~ 1 bit/sec in a real, indoor wireless environment. To illustrate the generality of our method, we show that our approach is equally applicable to per-packet coarse signal strength measurements using off-the-shelf 802.11 hardware.
information processing in sensor networks | 2005
Zang Li; Wade Trappe; Yanyong Zhang; Badri Nath
Many sensor applications are being developed that require the location of wireless devices, and localization schemes have been developed to meet this need. However, as location-based services become more prevalent, the localization infrastructure will become the target of malicious attacks. These attacks will not be conventional security threats, but rather threats that adversely affect the ability of localization schemes to provide trustworthy location information. This paper identifies a list of attacks that are unique to localization algorithms. Since these attacks are diverse in nature, and there may be many unforeseen attacks that can bypass traditional security countermeasures, it is desirable to alter the underlying localization algorithms to be robust to intentionally corrupted measurements. In this paper, we develop robust statistical methods to make localization attack-tolerant. We examine two broad classes of localization: triangulation and RF-based fingerprinting methods. For triangulation-based localization, we propose an adaptive least squares and least median squares position estimator that has the computational advantages of least squares in the absence of attacks and is capable of switching to a robust mode when being attacked. We introduce robustness to fingerprinting localization through the use of a median-based distance metric. Finally, we evaluate our robust localization schemes under different threat conditions.
international conference on distributed computing systems | 2005
Pandurang Kamat; Yanyong Zhang; Wade Trappe; Celal Ozturk
One of the most notable challenges threatening the successful deployment of sensor systems is privacy. Although many privacy-related issues can be addressed by security mechanisms, one sensor network privacy issue that cannot be adequately addressed by network security is source-location privacy. Adversaries may use RF localization techniques to perform hop-by-hop traceback to the source sensors location. This paper provides a formal model for the source-location privacy problem in sensor networks and examines the privacy characteristics of different sensor routing protocols. We examine two popular classes of routing protocols: the class of flooding protocols, and the class of routing protocols involving only a single path from the source to the sink. While investigating the privacy performance of routing protocols, we considered the tradeoffs between location-privacy and energy consumption. We found that most of the current protocols cannot provide efficient source-location privacy while maintaining desirable system performance. In order to provide efficient and private sensor communications, we devised new techniques to enhance source-location privacy that augment these routing protocols. One of our strategies, a technique we have called phantom routing, has proven flexible and capable of protecting the sources location, while not incurring a noticeable increase in energy overhead. Further, we examined the effect of source mobility on location privacy. We showed that, even with the natural privacy amplification resulting from source mobility, our phantom routing techniques yield improved source-location privacy relative to other routing methods
IEEE Network | 2006
Wenyuan Xu; Ke Ma; Wade Trappe; Yanyong Zhang
Wireless sensor networks are built upon a shared medium that makes it easy for adversaries to conduct radio interference, or jamming, attacks that effectively cause a denial of service of either transmission or reception functionalities. These attacks can easily be accomplished by an adversary by either bypassing MAC-layer protocols or emitting a radio signal targeted at jamming a particular channel. In this article we survey different jamming attacks that may be employed against a sensor network. In order to cope with the problem of jamming, we discuss a two-phase strategy involving the diagnosis of the attack, followed by a suitable defense strategy. We highlight the challenges associated with detecting jamming. To cope with jamming, we propose two different but complementary approaches. One approach is to simply retreat from the interferer which may be accomplished by either spectral evasion (channel surfing) or spatial evasion (spatial retreats). The second approach aims to compete more actively with the interferer by adjusting resources, such as power levels and communication coding, to achieve communication in the presence of the jammer.
IEEE Transactions on Signal Processing | 2003
Wade Trappe; Min Wu; Zhen Wang; K.J.R. Liu
Digital fingerprinting is a technique for identifying users who use multimedia content for unintended purposes, such as redistribution. These fingerprints are typically embedded into the content using watermarking techniques that are designed to be robust to a variety of attacks. A cost-effective attack against such digital fingerprints is collusion, where several differently marked copies of the same content are combined to disrupt the underlying fingerprints. We investigate the problem of designing fingerprints that can withstand collusion and allow for the identification of colluders. We begin by introducing the collusion problem for additive embedding. We then study the effect that averaging collusion has on orthogonal modulation. We introduce a tree-structured detection algorithm for identifying the fingerprints associated with K colluders that requires O(Klog(n/K)) correlations for a group of n users. We next develop a fingerprinting scheme based on code modulation that does not require as many basis signals as orthogonal modulation. We propose a new class of codes, called anti-collusion codes (ACCs), which have the property that the composition of any subset of K or fewer codevectors is unique. Using this property, we can therefore identify groups of K or fewer colluders. We present a construction of binary-valued ACC under the logical AND operation that uses the theory of combinatorial designs and is suitable for both the on-off keying and antipodal form of binary code modulation. In order to accommodate n users, our code construction requires only O(/spl radic/n) orthogonal signals for a given number of colluders. We introduce three different detection strategies that can be used with our ACC for identifying a suspect set of colluders. We demonstrate the performance of our ACC for fingerprinting multimedia and identifying colluders through experiments using Gaussian signals and real images.
workshop on wireless security | 2004
Wenyuan Xu; Timothy Wood; Wade Trappe; Yanyong Zhang
Wireless networks are built upon a shared medium that makes it easy for adversaries to launch denial of service (DoS) attacks. One form of denial of service is targeted at preventing sources from communicating. These attacks can be easily accomplished by an adversary by either bypassing MAC-layer protocols, or emitting a radio signal targeted at jamming a particular channel. In this paper we present two strategies that may be employed by wireless devices to evade a MAC/PHY-layer jamming-style wireless denial of service attack. The first strategy, channel surfing, is a form of spectral evasion that involves legitimate wireless devices changing the channel that they are operating on. The second strategy, spatial retreats, is a form of spatial evasion whereby legitimate mobile devices move away from the locality of the DoS emitter. We study both of these strategies for three broad wireless communication scenarios: two-party radio communication, an infrastructured wireless network, and an ad hoc wireless network. We evaluate several of our proposed strategies and protocols through ns-2 simulations and experiments on the Berkeley mote platform.
security of ad hoc and sensor networks | 2004
Celal Ozturk; Yanyong Zhang; Wade Trappe
As sensor-driven applications become increasingly integrated into our lives, issues related to sensor privacy will become increasingly important. Although many privacy-related issues can be addressed by security mechanisms, one sensor network privacy issue that cannot be adequately addressed by network security is confidentiality of the source sensors location. In this paper, we focus on protecting the sources location by introducing suitable modifications to sensor routing protocols to make it difficult for an adversary to backtrack to the origin of the sensor communication. In particular, we focus on the class of flooding protocols. While developing and evaluating our privacy-aware routing protocols, we jointly consider issues of location-privacy as well as the amount of energy consumed by the sensor network. Motivated by the observations, we propose a flexible routing strategy, known as <i>phantom routing</i>, which protects the sources location. Phantom routing is a two-stage routing scheme that first consists of a directed walk along a random direction, followed by routing from the phantom source to the sink. Our investigations have shown that phantom routing is a powerful technique for protecting the location of the source during sensor transmissions.
international conference on mobile systems, applications, and services | 2010
Suhas Mathur; Tong Jin; Nikhil Kasturirangan; Janani Chandrasekaran; Wenzhi Xue; Marco Gruteser; Wade Trappe
Urban street-parking availability statistics are challenging to obtain in real-time but would greatly benefit society by reducing traffic congestion. In this paper we present the design, implementation and evaluation of ParkNet, a mobile system comprising vehicles that collect parking space occupancy information while driving by. Each ParkNet vehicle is equipped with a GPS receiver and a passenger-side-facing ultrasonic range-finder to determine parking spot occupancy. The data is aggregated at a central server, which builds a real-time map of parking availability and could provide this information to clients that query the system in search of parking. Creating a spot-accurate map of parking availability challenges GPS location accuracy limits. To address this need, we have devised an environmental fingerprinting approach to achieve improved location accuracy. Based on 500 miles of road-side parking data collected over 2 months, we found that parking spot counts are 95% accurate and occupancy maps can achieve over 90% accuracy. Finally, we quantify the amount of sensors needed to provide adequate coverage in a city. Using extensive GPS traces from over 500 San Francisco taxicabs, we show that if ParkNet were deployed in city taxicabs, the resulting mobile sensors would provide adequate coverage and be more cost-effective by an estimated factor of roughly 10-15 when compared to a sensor network with a dedicated sensor at every parking space, as is currently being tested in San Francisco.
IEEE Transactions on Information Forensics and Security | 2010
Chunxuan Ye; Suhas Mathur; Alex Reznik; Yogendra C. Shah; Wade Trappe; Narayan B. Mandayam
The multipath-rich wireless environment associated with typical wireless usage scenarios is characterized by a fading channel response that is time-varying, location-sensitive, and uniquely shared by a given transmitter-receiver pair. The complexity associated with a richly scattering environment implies that the short-term fading process is inherently hard to predict and best modeled stochastically, with rapid decorrelation properties in space, time, and frequency. In this paper, we demonstrate how the channel state between a wireless transmitter and receiver can be used as the basis for building practical secret key generation protocols between two entities. We begin by presenting a scheme based on level crossings of the fading process, which is well-suited for the Rayleigh and Rician fading models associated with a richly scattering environment. Our level crossing algorithm is simple, and incorporates a self-authenticating mechanism to prevent adversarial manipulation of message exchanges during the protocol. Since the level crossing algorithm is best suited for fading processes that exhibit symmetry in their underlying distribution, we present a second and more powerful approach that is suited for more general channel state distributions. This second approach is motivated by observations from quantizing jointly Gaussian processes, but exploits empirical measurements to set quantization boundaries and a heuristic log likelihood ratio estimate to achieve an improved secret key generation rate. We validate both proposed protocols through experimentations using a customized 802.11a platform, and show for the typical WiFi channel that reliable secret key establishment can be accomplished at rates on the order of 10 b/s.