Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wafik S. El-Deiry is active.

Publication


Featured researches published by Wafik S. El-Deiry.


Cell | 1993

WAF1, a potential mediator of p53 tumor suppression

Wafik S. El-Deiry; Takashi Tokino; Victor E. Velculescu; Daniel B. Levy; Ramon Parsons; Jeffrey M. Trent; David Lin; W.Edward Mercer; Kenneth W. Kinzler; Bert Vogelstein

The ability of p53 to activate transcription from specific sequences suggests that genes induced by p53 may mediate its biological role as a tumor suppressor. Using a subtractive hybridization approach, we identified a gene, named WAF1, whose induction was associated with wild-type but not mutant p53 gene expression in a human brain tumor cell line. The WAF1 gene was localized to chromosome 6p21.2, and its sequence, structure, and activation by p53 was conserved in rodents. Introduction of WAF1 cDNA suppressed the growth of human brain, lung, and colon tumor cells in culture. Using a yeast enhancer trap, a p53-binding site was identified 2.4 kb upstream of WAF1 coding sequences. The WAF1 promoter, including this p53-binding site, conferred p53-dependent inducibility upon a heterologous reporter gene. These studies define a gene whose expression is directly induced by p53 and that could be an important mediator of p53-dependent tumor growth suppression.


Cell | 1992

A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia

Michael B. Kastan; Qimin Zhan; Wafik S. El-Deiry; Tyler Jacks; William V. Walsh; Beverly Plunkett; Bert Vogelstein; Albert J. Fornace

Cell cycle checkpoints can enhance cell survival and limit mutagenic events following DNA damage. Primary murine fibroblasts became deficient in a G1 checkpoint activated by ionizing radiation (IR) when both wild-type p53 alleles were disrupted. In addition, cells from patients with the radiosensitive, cancer-prone disease ataxia-telangiectasia (AT) lacked the IR-induced increase in p53 protein levels seen in normal cells. Finally, IR induction of the human GADD45 gene, an induction that is also defective in AT cells, was dependent on wild-type p53 function. Wild-type but not mutant p53 bound strongly to a conserved element in the GADD45 gene, and a p53-containing nuclear factor, which bound this element, was detected in extracts from irradiated cells. Thus, we identified three participants (AT gene(s), p53, and GADD45) in a signal transduction pathway that controls cell cycle arrest following DNA damage; abnormalities in this pathway probably contribute to tumor development.


Cell Death & Differentiation | 2005

Classification of cell death: recommendations of the Nomenclature Committee on Cell Death

Guido Kroemer; Wafik S. El-Deiry; Pierre Golstein; Marcus E. Peter; David L. Vaux; Peter Vandenabeele; Boris Zhivotovsky; Mikhail V. Blagosklonny; Walter Malorni; Richard A. Knight; Mauro Piacentini; Shigekazu Nagata; Gerry Melino

Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like ‘percentage apoptosis’ and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that ‘autophagic cell death’ is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including ‘entosis’, ‘mitotic catastrophe’, ‘necrosis’, ‘necroptosis’ and ‘pyroptosis’.


Cell Death & Differentiation | 2012

Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012

Lorenzo Galluzzi; Ilio Vitale; John M. Abrams; Emad S. Alnemri; Eric H. Baehrecke; Mikhail V. Blagosklonny; Ted M. Dawson; Valina L. Dawson; Wafik S. El-Deiry; Simone Fulda; Eyal Gottlieb; Douglas R. Green; Michael O. Hengartner; Oliver Kepp; Richard A. Knight; Sharad Kumar; Stuart A. Lipton; Xin Lu; Frank Madeo; Walter Malorni; Patrick Mehlen; Gabriel Núñez; Marcus E. Peter; Mauro Piacentini; David C. Rubinsztein; Yufang Shi; Hans-Uwe Simon; Peter Vandenabeele; Eileen White; Junying Yuan

In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including ‘apoptosis’, ‘necrosis’ and ‘mitotic catastrophe’. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.


Cancer Biology & Therapy | 2005

Overview of cell death signaling pathways.

Zhaoyu Jin; Wafik S. El-Deiry

Apoptosis plays an important role in development and maintenance of tissue homeostasis. Intensive efforts have been made to explore the molecular mechanisms of the apoptotic signaling pathways including the initiation, mediation, execution, and regulation of apoptosis. Caspases are central effectors of apoptosis. Cells undergo apoptosis through two major pathways, namely the extrinsic pathway (death receptor pathway) or the intrinsic pathway (the mitochondrial pathway). Finally, the contents of dead cells are packaged into apoptotic bodies, which are recognized by neighboring cells or macrophages and cleared by phagocytosis. Cellular apoptosis is tightly controlled by complex regulatory networks including balancing pro-survival signals. De-regulation of apoptosis may lead to pathological disorders such as developmental defects, autoimmune diseases, neurodegeneration or cancer. Increasing attention is being focused on alternative signaling pathways leading to cell death including necrosis, autophagy, and mitotic catastrophe. Understanding of cell death signaling pathways is relevant to understanding cancer and to developing more effective therapeutics.


Oncogene | 2003

TRAIL and apoptosis induction by TNF-family death receptors

Shulin Wang; Wafik S. El-Deiry

Tumor necrosis factor-related apoptosis-inducing ligand or Apo 2 ligand (TRAIL/Apo2L) is a member of the tumor necrosis factor (TNF) family of ligands capable of initiating apoptosis through engagement of its death receptors. TRAIL selectively induces apoptosis of a variety of tumor cells and transformed cells, but not most normal cells, and therefore has garnered intense interest as a promising agent for cancer therapy. TRAIL is expressed on different cells of the immune system and plays a role in both T-cell- and natural killer cell-mediated tumor surveillance and suppression of suppressing tumor metastasis. Some mismatch-repair-deficient tumors evade TRAIL-induced apoptosis and acquire TRAIL resistance through different mechanisms. Death receptors, members of the TNF receptor family, signal apoptosis independently of the p53 tumor-suppressor gene. TRAIL treatment in combination with chemo- or radiotherapy enhances TRAIL sensitivity or reverses TRAIL resistance by regulating the downstream effectors. Efforts to identify agents that activate death receptors or block specific effectors may improve therapeutic design. In this review, we summarize recent insights into the apoptosis-signaling pathways stimulated by TRAIL, present our current understanding of the physiological role of this ligand and the potential of its application for cancer therapy and prevention.


Cell Death & Differentiation | 2009

Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

Lorenzo Galluzzi; Stuart A. Aaronson; John M. Abrams; Emad S. Alnemri; David W. Andrews; Eric H. Baehrecke; Nicolas G. Bazan; Mikhail V. Blagosklonny; Klas Blomgren; Christoph Borner; Dale E. Bredesen; Catherine Brenner; Maria Castedo; John A. Cidlowski; Aaron Ciechanover; Gerald M. Cohen; V De Laurenzi; R De Maria; Mohanish Deshmukh; Brian David Dynlacht; Wafik S. El-Deiry; Richard A. Flavell; Simone Fulda; Carmen Garrido; Pierre Golstein; Marie Lise Gougeon; Douglas R. Green; Hinrich Gronemeyer; György Hajnóczky; J. M. Hardwick

Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.


Nature | 1997

Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1.

Kumaravel Somasundaram; Hongbing Zhang; Yi Xin Zeng; Yariv Mouvras; Yi Peng; Hongxiang Zhang; Gen Sheng Wu; Jonathan D. Licht; Barbara L. Weber; Wafik S. El-Deiry

Much of the predisposition to hereditary breast and ovarian cancer has been attributed to inherited defects in the BRCA1 tumour-suppressor gene. The nuclear protein BRCA1 has the properties of a transcription factor, and can interact with the recombination and repair protein RAD51 (ref. 8). Young women with germline alterations in BRCA1 develop breast cancer at rates 100-fold higher than the general population, and BRCA1-null mice die before day 8 of development,. However, the mechanisms of BRCA1-mediated growth regulation and tumour suppression remain unknown. Here we show that BRCA1 transactivates expression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in a p53-independent manner, and that BRCA1 inhibits cell-cycle progression into the S-phase following its transfection into human cancer cells. BRCA1 does not inhibit S-phase progression in p21−/− cells, unlike p21+/+ cells, and tumour-associated, transactivation-deficient mutants of BRCA1 are defective in both transactivation of p21 and cell-cycle inhibition. These data suggest that one mechanism by which BRCA1 contributes to cell-cycle arrest and growth suppression is through the induction of p21.


Oncogene | 1998

BRCA1 physically associates with p53 and stimulates its transcriptional activity

Hongbing Zhang; Kumaravel Somasundaram; Yi Peng; Hui Tian; Hongxiang Zhang; Daike Bi; Barbara L. Weber; Wafik S. El-Deiry

Mutations of the BRCA1 tumor suppressor gene are the most commonly detected alterations in familial breast and ovarian cancer. Although BRCA1 is required for normal mouse development, the molecular basis for its tumor suppressive function remains poorly understood. We show here that BRCA1 increases p53-dependent transcription from the p21WAF1/CIP1 and bax promoters. We also show that BRCA1 and p53 proteins interact both in vitro and in vivo. The interacting regions map, in vitro, to aa 224–500 of BRCA1 and the C-terminal domain of p53. Tumor-derived transactivation-deficient BRCA1 mutants are defective in co-activation of p53-dependent transcription and a truncation mutant of BRCA1 that retains the p53-interacting region acts as a dominant inhibitor of p53-dependent transcription. BRCA1 and p53 cooperatively induce apoptosis of cancer cells. The results indicate that BRCA1 and p53 may coordinately regulate gene expression in their role as tumor suppressors.


Oncogene | 2003

P53 and radiation responses.

Peiwen Fei; Wafik S. El-Deiry

Cells have evolved elaborate mechanisms (checkpoints) to monitor genomic integrity in order to ensure the high-fidelity transmission of genetic information. Cells harboring defects in checkpoint pathways respond to DNA damage improperly, which in turn may enhance the rate of cancer development. Ionizing radiation (IR) primarily leads to double-strand DNA breaks (DSBs), which activate DNA damage checkpoints to initiate signals ultimately leading to a binary decision between cell death and cell survival. TP53 has been recognized as an important checkpoint protein, functioning mainly through transcriptional control of target genes that influence multiple response pathways and leading to the diversity of responses to IR in mammalian cells. We review how the tumor suppressor P53 is involved in the complex response to IR to enforce the cells fate to live by inducing the growth arrest coupled to DNA damage repair or to die by inducing irreversible growth arrest or apoptosis. Moreover, recent insights have emerged in our understanding of how P53 modulates radiosensitivity in tissues following IR as well as its role in sensitizing cells to chemo- and radiotherapy. The P53 pathway remains an attractive target for exploitation in the war on cancer.

Collaboration


Dive into the Wafik S. El-Deiry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua E. Allen

Penn State Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Lanlan Zhou

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenge Wang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan G. Dolloff

Penn State Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge