Wagner Barreto-Souza
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wagner Barreto-Souza.
Journal of Statistical Computation and Simulation | 2011
Wagner Barreto-Souza; Alice Lemos de Morais; Gauss M. Cordeiro
For the first time, we propose the Weibull-geometric (WG) distribution which generalizes the extended exponential-geometric (EG) distribution introduced by Adamidis et al. [K. Adamidis, T. Dimitrakopoulou, and S. Loukas, On a generalization of the exponential-geometric distribution, Statist. Probab. Lett. 73 (2005), pp. 259–269], the exponential-geometric distribution discussed by Adamidis and Loukas [K. Adamidis and S. Loukas, A lifetime distribution with decreasing failure rate, Statist. Probab. Lett. 39 (1998), pp. 35–42] and the Weibull distribution. We derive many of its standard properties. The hazard function of the EG distribution is monotone decreasing, but the hazard function of the WG distribution can take more general forms. Unlike the Weibull distribution, the new distribution is useful for modelling unimodal failure rates. We derive the cumulative distribution and hazard functions, moments, density of order statistics and their moments. We provide expressions for the Rényi and Shannon entropies. The maximum likelihood estimation procedure is discussed and an EM algorithm [A.P. Dempster, N.M. Laird, and D.B. Rubim, Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. R. Stat. Soc. B 39 (1977), pp. 1–38; G.J. McLachlan and T. Krishnan, The EM Algorithm and Extension, Wiley, New York, 1997] is given for estimating the parameters. We obtain the observed information matrix and discuss inference issues. The flexibility and potentiality of the new distribution is illustrated by means of a real data set.
Computational Statistics & Data Analysis | 2010
Alexandre B. Simas; Wagner Barreto-Souza; Andréa V. Rocha
In this article, we extend the beta regression model proposed by Ferrari and Cribari-Neto (2004), which is generally useful in situations where the response is restricted to the standard unit interval in two different ways: we let the regression structure to be nonlinear, and we allow a regression structure for the precision parameter (which may also be nonlinear). We derive general formulae for second order biases of the maximum likelihood estimators and use them to define bias-corrected estimators. Our formulae generalize the results obtained by Ospina et al. (2006), and are easily implemented by means of supplementary weighted linear regressions. We compare, by simulation, these bias-corrected estimators with three different estimators which are also bias-free to second order: one analytical, and two based on bootstrap methods. The simulation also suggests that one should prefer to estimate a nonlinear model, which is linearizable, directly in its nonlinear form. Our results additionally indicate that, whenever possible, dispersion covariates should be considered during the selection of the model, as we exemplify with two empirical applications. Finally, we also present simulation results on confidence intervals.
Journal of Statistical Computation and Simulation | 2010
Wagner Barreto-Souza; Alessandro H. S. Santos; Gauss M. Cordeiro
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.
Statistics & Probability Letters | 2009
Wagner Barreto-Souza; Francisco Cribari-Neto
The two-parameter distribution known as exponential-Poisson (EP) distribution, which has decreasing failure rate, was introduced by Kus (2007). In this paper we generalize the EP distribution and show that the failure rate of the new distribution can be decreasing or increasing. The failure rate can also be upside-down bathtub shaped. A comprehensive mathematical treatment of the new distribution is provided. We provide closed-form expressions for the density, cumulative distribution, survival and failure rate functions; we also obtain the density of the ith order statistic. We derive the rth raw moment of the new distribution and also the moments of order statistics. Moreover, we discuss estimation by maximum likelihood and obtain an expression for Fishers information matrix. Furthermore, expressions for the Renyi and Shannon entropies are given and an application using a real data set is presented. Finally, simulation results on maximum likelihood estimation are presented.
Computational Statistics & Data Analysis | 2011
Alice Lemos de Morais; Wagner Barreto-Souza
In this paper we introduce the Weibull power series (WPS) class of distributions which is obtained by compounding Weibull and power series distributions, where the compounding procedure follows same way that was previously carried out by Adamidis and Loukas (1998). This new class of distributions has as a particular case the two-parameter exponential power series (EPS) class of distributions (Chahkandi and Ganjali, 2009), which contains several lifetime models such as: exponential geometric (Adamidis and Loukas, 1998), exponential Poisson (Kus, 2007) and exponential logarithmic (Tahmasbi and Rezaei, 2008) distributions. The hazard function of our class can be increasing, decreasing and upside down bathtub shaped, among others, while the hazard function of an EPS distribution is only decreasing. We obtain several properties of the WPS distributions such as moments, order statistics, estimation by maximum likelihood and inference for a large sample. Furthermore, the EM algorithm is also used to determine the maximum likelihood estimates of the parameters and we discuss maximum entropy characterizations under suitable constraints. Special distributions are studied in some detail. Applications to two real data sets are given to show the flexibility and potentiality of the new class of distributions.
Computational Statistics & Data Analysis | 2010
Rodrigo B. Silva; Wagner Barreto-Souza; Gauss M. Cordeiro
The modeling and analysis of lifetimes is an important aspect of statistical work in a wide variety of scientific and technological fields. For the first time, the so-called generalized exponential geometric distribution is introduced. The new distribution can have a decreasing, increasing and upside-down bathtub failure rate function depending on its parameters. It includes the exponential geometric (Adamidis and Loukas, 1998), the generalized exponential (Gupta and Kundu, 1999) and the extended exponential geometric (Adamidis et al., 2005) distributions as special sub-models. We provide a comprehensive mathematical treatment of the distribution and derive expressions for the moment generating function, characteristic function and rth moment. An expression for Renyi entropy is obtained, and estimation of the stress-strength parameter is discussed. We estimate the parameters by maximum likelihood and obtain the Fisher information matrix. The flexibility of the new model is illustrated in an application to a real data set.
Communications in Statistics-theory and Methods | 2011
Wagner Barreto-Souza; Gauss M. Cordeiro; Alexandre B. Simas
Nadarajah and Gupta (2004) introduced the beta Fréchet (BF) distribution, which is a generalization of the exponentiated Fréchet (EF) and Fréchet distributions, and obtained the probability density and cumulative distribution functions. However, they did not investigate the moments and the order statistics. In this article, the BF density function and the density function of the order statistics are expressed as linear combinations of Fréchet density functions. This is important to obtain some mathematical properties of the BF distribution in terms of the corresponding properties of the Fréchet distribution. We derive explicit expansions for the ordinary moments and L-moments and obtain the order statistics and their moments. We also discuss maximum likelihood estimation and calculate the information matrix which was not given in the literature. The information matrix is numerically determined. The usefulness of the BF distribution is illustrated through two applications to real data sets.
Statistics | 2013
Wagner Barreto-Souza; Hassan S. Bakouch
In this paper, we introduce a new lifetime distribution by compounding exponential and Poisson–Lindley distributions, named the exponential Poisson–Lindley (EPL) distribution. A practical situation where the EPL distribution is most appropriate for modelling lifetime data than exponential–geometric, exponential–Poisson and exponential–logarithmic distributions is presented. We obtain the density and failure rate of the EPL distribution and properties such as mean lifetime, moments, order statistics and Rényi entropy. Furthermore, estimation by maximum likelihood and inference for large samples are discussed. The paper is motivated by two applications to real data sets and we hope that this model will be able to attract wider applicability in survival and reliability.
Anais Da Academia Brasileira De Ciencias | 2013
Wagner Barreto-Souza; Artur J. Lemonte; Gauss M. Cordeiro
Abstract Marshall and Olkin (1997) introduced an interesting method of adding a parameter to a wellestablished distribution. However, they did not investigate general mathematical properties of their family of distributions. We provide for this family of distributions general expansions for the density function, explicit expressions for the moments and moments of the order statistics. Several especial models are investigated. We discuss estimation of the model parameters. An application to a real data set is presented for illustrative purposes.
Brazilian Journal of Probability and Statistics | 2013
Wagner Barreto-Souza; Alexandre B. Simas
In this paper we introduce a new method to add a parameter to a family of distributions. The additional parameter is completely studied and a full description of its behaviour in the distribution is given. We obtain several mathematical properties of the new class of distributions such as Kullback-Leibler divergence, Shannon entropy, moments, order statistics, estimation of the parameters and inference for large sample. Further, we showed that the new distribution have the reference distribution as special case, and that the usual inference procedures also hold in this case. Furthermore, we applied our method to yield three-parameter extensions of the Weibull and beta distributions. To motivate the use of our class of distributions, we present a successful application to fatigue life data.