Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wai-Leung Ng is active.

Publication


Featured researches published by Wai-Leung Ng.


Annual Review of Genetics | 2009

Bacterial Quorum-Sensing Network Architectures

Wai-Leung Ng; Bonnie L. Bassler

Quorum sensing is a cell-cell communication process in which bacteria use the production and detection of extracellular chemicals called autoinducers to monitor cell population density. Quorum sensing allows bacteria to synchronize the gene expression of the group, and thus act in unison. Here, we review the mechanisms involved in quorum sensing with a focus on the Vibrio harveyi and Vibrio cholerae quorum-sensing systems. We discuss the differences between these two quorum-sensing systems and the differences between them and other paradigmatic bacterial signal transduction systems. We argue that the Vibrio quorum-sensing systems are optimally designed to precisely translate extracellular autoinducer information into internal changes in gene expression. We describe how studies of the V. harveyi and V. cholerae quorum-sensing systems have revealed some of the fundamental mechanisms underpinning the evolution of collective behaviors.


Molecular Microbiology | 2011

Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems

Wai-Leung Ng; Lark J. Perez; Yunzhou Wei; Christina M. Kraml; M. F. Semmelhack; Bonnie L. Bassler

Quorum sensing is a process of bacterial cell–cell communication that enables populations of cells to carry out behaviours in unison. Quorum sensing involves detection of the density‐dependent accumulation of extracellular signal molecules called autoinducers that elicit population‐wide changes in gene expression. In Vibrio species, CqsS is a membrane‐bound histidine kinase that acts as the receptor for the CAI‐1 autoinducer which is produced by the CqsA synthase. In Vibrio cholerae, CAI‐1 is (S)‐3‐hydroxytridecan‐4‐one. The C170 residue of V. cholerae CqsS specifies a preference for a ligand with a 10‐carbon tail length. However, a phenylalanine is present at this position in Vibrio harveyi CqsS and other homologues, suggesting that a shorter CAI‐1‐like molecule functions as the signal. To investigate this, we purified the V. harveyi CqsS ligand, and determined that it is (Z)‐3‐aminoundec‐2‐en‐4‐one (Ea‐C8‐CAI‐1) carrying an 8‐carbon tail. The V. harveyi CqsA/CqsS system is exquisitely selective for production and detection of this ligand, while the V. cholerae CqsA/CqsS counterparts show relaxed specificity in both production and detection. We isolated CqsS mutants in each species that display reversed specificity for ligands. Our analysis provides insight into how fidelity is maintained in signal transduction systems.


ACS Chemical Biology | 2011

Mechanism of Vibrio cholerae Autoinducer-1 Biosynthesis

Yunzhou Wei; Lark J. Perez; Wai-Leung Ng; M. F. Semmelhack; Bonnie L. Bassler

Vibrio cholerae, the causative agent of the disease cholera, uses a cell to cell communication process called quorum sensing to control biofilm formation and virulence factor production. The major V. cholerae quorum-sensing signal CAI-1 has been identified as (S)-3-hydroxytridecan-4-one, and the CqsA protein is required for CAI-1 production. However, the biosynthetic route to CAI-1 remains unclear. Here we report that (S)-adenosylmethionine (SAM) is one of the two biosynthetic substrates for CqsA. CqsA couples SAM and decanoyl-coenzyme A to produce a previously unknown but potent quorum-sensing molecule, 3-aminotridec-2-en-4-one (Ea-CAI-1). The CqsA mechanism is unique; it combines two enzymatic transformations, a β,γ-elimination of SAM and an acyltransferase reaction into a single PLP-dependent catalytic process. Ea-CAI-1 is subsequently converted to CAI-1, presumably through the intermediate tridecane-3,4-dione (DK-CAI-1). We propose that the Ea-CAI-1 to DK-CAI-1 conversion occurs spontaneously, and we identify the enzyme responsible for the subsequent step: conversion of DK-CAI-1 into CAI-1. SAM is the substrate for the synthesis of at least three different classes of quorum-sensing signal molecules, indicating that bacteria have evolved a strategy to leverage an abundant substrate for multiple signaling purposes.


Nature Chemical Biology | 2009

The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA

Robert C. Kelly; Megan E. Bolitho; Douglas A. Higgins; Wenyun Lu; Wai-Leung Ng; Philip D. Jeffrey; Joshua D. Rabinowitz; M. F. Semmelhack; Frederick M. Hughson; Bonnie L. Bassler

Vibrio cholerae, the bacterium that causes the disease cholera, controls virulence factor production and biofilm development in response to two extracellular quorum-sensing molecules, called autoinducers. The strongest autoinducer, called CAI-1 (for cholera autoinducer-1), was previously identified as (S)-3-hydroxytridecan-4-one. Biosynthesis of CAI-1 requires the enzyme CqsA. Here, we determine the CqsA reaction mechanism, identify the CqsA substrates as (S)-2-aminobutyrate and decanoyl coenzyme A, and demonstrate that the product of the reaction is 3-aminotridecan-4-one, dubbed amino-CAI-1. CqsA produces amino-CAI-1 by a pyridoxal phosphate (PLP)-dependent acyl-CoA transferase reaction. Amino-CAI-1 is converted to CAI-1 in a subsequent step via a CqsA-independent mechanism. Consistent with this, we find cells release ≥100 times more CAI-1 than amino-CAI-1. Nonetheless, V. cholerae responds to amino-CAI-1 as well as CAI-1, whereas other CAI-1 variants do not elicit a quorum-sensing response. Thus, both CAI-1 and amino-CAI-1 have potential as lead molecules in the development of an anti-cholera treatment.


PLOS Pathogens | 2012

Broad Spectrum Pro-Quorum-Sensing Molecules as Inhibitors of Virulence in Vibrios

Wai-Leung Ng; Lark J. Perez; Jian-Ping Cong; M. F. Semmelhack; Bonnie L. Bassler

Quorum sensing (QS) is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.


Fems Microbiology Reviews | 2016

Specificity and complexity in bacterial quorum-sensing systems.

Lisa A. Hawver; Sarah A. Jung; Wai-Leung Ng

Quorum sensing (QS) is a microbial cell-to-cell communication process that relies on the production and detection of chemical signals called autoinducers (AIs) to monitor cell density and species complexity in the population. QS allows bacteria to behave as a cohesive group and coordinate collective behaviors. While most QS receptors display high specificity to their AI ligands, others are quite promiscuous in signal detection. How do specific QS receptors respond to their cognate signals with high fidelity? Why do some receptors maintain low signal recognition specificity? In addition, many QS systems are composed of multiple intersecting signaling pathways: what are the benefits of preserving such a complex signaling network when a simple linear ‘one-to-one’ regulatory pathway seems sufficient to monitor cell density? Here, we will discuss different molecular mechanisms employed by various QS systems that ensure productive and specific QS responses. Moreover, the network architectures of some well-characterized QS circuits will be reviewed to understand how the wiring of different regulatory components achieves different biological goals.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Probing bacterial transmembrane histidine kinase receptor–ligand interactions with natural and synthetic molecules

Wai-Leung Ng; Yunzhou Wei; Lark J. Perez; Jian-Ping Cong; Tao Long; Matthew J. Koch; M. F. Semmelhack; Ned S. Wingreen; Bonnie L. Bassler

Bacterial histidine kinases transduce extracellular signals into the cytoplasm. Most stimuli are chemically undefined; therefore, despite intensive study, signal recognition mechanisms remain mysterious. We exploit the fact that quorum-sensing signals are known molecules to identify mutants in the Vibrio cholerae quorum-sensing receptor CqsS that display altered responses to natural and synthetic ligands. Using this chemical-genetics approach, we assign particular amino acids of the CqsS sensor to particular roles in recognition of the native ligand, CAI-1 (S-3 hydroxytridecan-4-one) as well as ligand analogues. Amino acids W104 and S107 dictate receptor preference for the carbon-3 moiety. Residues F162 and C170 specify ligand head size and tail length, respectively. By combining mutations, we can build CqsS receptors responsive to ligand analogues altered at both the head and tail. We suggest that rationally designed ligands can be employed to study, and ultimately to control, histidine kinase activity.


PLOS Pathogens | 2015

Quadruple Quorum-Sensing Inputs Control Vibrio cholerae Virulence and Maintain System Robustness

Sarah A. Jung; Christine A. Chapman; Wai-Leung Ng

Bacteria use quorum sensing (QS) for cell-cell communication to carry out group behaviors. This intercellular signaling process relies on cell density-dependent production and detection of chemical signals called autoinducers (AIs). Vibrio cholerae, the causative agent of cholera, detects two AIs, CAI-1 and AI-2, with two histidine kinases, CqsS and LuxQ, respectively, to control biofilm formation and virulence factor production. At low cell density, these two signal receptors function in parallel to activate the key regulator LuxO, which is essential for virulence of this pathogen. At high cell density, binding of AIs to their respective receptors leads to deactivation of LuxO and repression of virulence factor production. However, mutants lacking CqsS and LuxQ maintain a normal LuxO activation level and remain virulent, suggesting that LuxO is activated by additional, unidentified signaling pathways. Here we show that two other histidine kinases, CqsR (formerly known as VC1831) and VpsS, act upstream in the central QS circuit of V. cholerae to activate LuxO. V. cholerae strains expressing any one of these four receptors are QS proficient and capable of colonizing animal hosts. In contrast, mutants lacking all four receptors are phenotypically identical to LuxO-defective mutants. Importantly, these four functionally redundant receptors act together to prevent premature induction of a QS response caused by signal perturbations. We suggest that the V. cholerae QS circuit is composed of quadruple sensory inputs and has evolved to be refractory to sporadic AI level perturbations.


Molecular Microbiology | 2012

Ligand and antagonist driven regulation of the Vibrio cholerae quorum‐sensing receptor CqsS

Yunzhou Wei; Wai-Leung Ng; Jian-Ping Cong; Bonnie L. Bassler

Quorum sensing, a bacterial cell–cell communication process, controls biofilm formation and virulence factor production in Vibrio cholerae, a human pathogen that causes the disease cholera. The major V. cholerae autoinducer is (S)‐3‐hydroxytridecan‐4‐one (CAI‐1). A membrane bound two‐component sensor histidine kinase called CqsS detects CAI‐1, and the CqsS → LuxU → LuxO phosphorelay cascade transduces the information encoded in CAI‐1 into the cell. Because the CAI‐1 ligand is known and because the signalling circuit is simple, consisting of only three proteins, this system is ideal for analysing ligand regulation of a sensor histidine kinase. Here we reconstitute the CqsS → LuxU → LuxO phosphorylation cascade in vitro. We find that CAI‐1 inhibits the initial auto‐phosphorylation of CqsS whereas subsequent phosphotransfer steps and CqsS phosphatase activity are not CAI‐1‐controlled. CAI‐1 binding to CqsS causes a conformational change that renders His194 in CqsS inaccessible to the CqsS catalytic domain. CqsS mutants with altered ligand detection specificities are faithfully controlled by their corresponding modified ligands in vitro. Likewise, pairing of agonists and antagonists allows in vitro assessment of their opposing activities. Our data are consistent with a two‐state model for ligand control of histidine kinases.


Bioorganic & Medicinal Chemistry | 2011

Small molecule probes of the receptor binding site in the Vibrio cholerae CAI-1 quorum sensing circuit

Megan E. Bolitho; Lark J. Perez; Matthew J. Koch; Wai-Leung Ng; Bonnie L. Bassler; M. F. Semmelhack

Based on modification of separate structural features of the Vibrio cholerae quorum sensing signal, (S)-3-hydroxytridecan-4-one (CAI-1), three focused compound libraries have been synthesized and evaluated for biological activity. Modifications to the acyl tail and α-hydroxy ketone typically provided agonists with activities correlated to tail length and conservative changes to the hydroxy ketone. Among the molecules identified within this collection of agonists is Am-CAI-1 (B11), which is among the most potent agonists reported to date with an EC(50) of 0.21 μM. Modifications to the ethyl side chain delivered molecules with both agonist and antagonist activity, including m-OH-Ph-CAI-1 (C13) which is the most potent antagonist reported to date with an IC(50) of 36 μM. The molecules described in this manuscript are anticipated to serve as valuable tools in the study of quorum sensing in Vibrio cholerae and provide new leads in the development of an antivirulence therapy against this human pathogen.

Collaboration


Dive into the Wai-Leung Ng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart L Schreiber

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge