Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wai-Man Wong is active.

Publication


Featured researches published by Wai-Man Wong.


Nature Medicine | 2007

LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis

Sha Mi; Bing Hu; Kyungmin Hahm; Yi Luo; Edward S. Hui; Qiuju Yuan; Wai-Man Wong; Li Wang; Huanxing Su; Tak-Ho Chu; Jiasong Guo; Wenming Zhang; Kf So; Blake Pepinsky; Zhaohui Shao; Christilyn Graff; Ellen Garber; Vincent Jung; Wutian Wu

Demyelinating diseases, such as multiple sclerosis, are characterized by the loss of the myelin sheath around neurons, owing to inflammation and gliosis in the central nervous system (CNS). Current treatments therefore target anti-inflammatory mechanisms to impede or slow disease progression. The identification of a means to enhance axon myelination would present new therapeutic approaches to inhibit and possibly reverse disease progression. Previously, LRR and Ig domain–containing, Nogo receptor–interacting protein (LINGO-1) has been identified as an in vitro and in vivo negative regulator of oligodendrocyte differentiation and myelination. Here we show that loss of LINGO-1 function by Lingo1 gene knockout or by treatment with an antibody antagonist of LINGO-1 function leads to functional recovery from experimental autoimmune encephalomyelitis. This is reflected biologically by improved axonal integrity, as confirmed by magnetic resonance diffusion tensor imaging, and by newly formed myelin sheaths, as determined by electron microscopy. Antagonism of LINGO-1 or its pathway is therefore a promising approach for the treatment of demyelinating diseases of the CNS.


Nanomedicine: Nanotechnology, Biology and Medicine | 2009

Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain.

Jiasong Guo; Ka Kit Gilberto Leung; Huanxing Su; Qiuju Yuan; Li Wang; Tak-Ho Chu; Wenming Zhang; Jenny Kan-Suen Pu; Gloria Kowk Po Ng; Wai-Man Wong; Xiang Dai; Wutian Wu

UNLABELLED Traumatic brain injury (TBI) or brain surgery may cause extensive loss of cerebral parenchyma. However, no strategy for reconstruction has been clinically effective. Our previous study had shown that self-assembling peptide nanofiber scaffold (SAPNS) can bridge the injured spinal cord, elicit axon regeneration, and eventually promote locomotor functional recovery. In the present study we investigated the effect of SAPNS for the reconstruction of acutely injured brain. The lesion cavity of the injured cortex was filled with SAPNS or saline immediately after surgically induced TBI, and the rats were killed 2 days, 2 weeks, or 6 weeks after the surgery for histology, immunohistochemistry, and TUNEL studies. Saline treatment in the control animals resulted in a large cavity in the injured brain, whereas no cavity of any significant size was found in the SAPNS-treated animals. Around the lesion site in control animals were many macrophages (ED1 positive) but few TUNEL-positive cells, indicating that the TBI caused secondary tissue loss mainly by means of necrosis, not apoptosis. In the SAPNS-treated animals the graft of SAPNS integrated well with the host tissue with no obvious gaps. Moreover, there were fewer astrocytes (GFAP positive) and macrophages (ED1 positive) around the lesion site in the SAPNS-treated animals than were found in the controls. Thus, SAPNS may help to reconstruct the acutely injured brain and reduce the glial reaction and inflammation in the surrounding brain tissue. FROM THE CLINICAL EDITOR Self-assembling peptide nanofiber scaffold (SAPNS) was reported earlier to bridge the injured spinal cord, elicit axon regeneration, and promote locomotor recovery. In this study the effect of SAPNS for the reconstruction of acutely injured brain was investigated. In SAPNS-treated animals the graft integrated well with the host tissue with no obvious gaps. SAPNS may help to reconstruct the acutely injured brain and reduced the glial reaction and inflammation in the surrounding brain tissue.


European Journal of Neuroscience | 2004

Survival, regeneration and functional recovery of motoneurons in adult rats by reimplantation of ventral root following spinal root avulsion

Huai-Yu Gu; Hong Chai; Jian-Yi Zhang; Zhibin Yao; Li-Hua Zhou; Wai-Man Wong; Iain C. Bruce; Wutian Wu

We investigated the functional recovery of motoneurons after reimplanting an avulsed ventral root in a rat model of traction injury. The eighth cervical root (C8) was avulsed by controlled traction and immediately reimplanted to the spinal cord. Spinal nerves from neighbouring segments (C5, C6, C7 and T1) were ligated and cut. After 12 or 20 weeks, the survival, regeneration and functional recovery of spinal motoneurons were evaluated by Nissl staining, retrograde labelling of motoneurons, NOS histochemistry, histological examination of muscle and nerve–muscle junction, electromyography and behavioural observation. In the control animals, about 14% or 11% of spinal motoneurons survived 12 or 20 weeks postinjury, respectively. By contrast, in animals with ventral root reimplantation, 62% and 55% of motoneurons survived at 12 or 20 weeks postinjury, respectively. Retrograde labelling and histological examination indicated that about 90% of the surviving motoneurons in the C8 segment regenerated axons into the reimplanted ventral root. Staining the muscles with silver and cholinesterase revealed new motor endplates in the reinnervated muscle. Functionally significant electromyographic responses in flexor digitorum superficialis and flexor carpi radialis were observed in experimental animals; however, the average latency of the motor action potentials was greater than normal control. The grasping test showed functional recovery of finger flexors and median nerve. In conclusion, our results indicate that spinal motoneurons can regenerate axons through reimplanted roots and reinnervate muscles to recover partial function.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury

Xiaoduo Zhan; Mingyong Gao; Yanwen Jiang; Weiwei Zhang; Wai-Man Wong; Qiuju Yuan; Huanxing Su; Xiaoning Kang; Xiang Dai; Wenying Zhang; Jiasong Guo; Wutian Wu

UNLABELLED Peripheral nerve injury still remains a refractory challenge for both clinical and basic researchers. A novel nanofiber conduit made of blood vessel and filled with amphiphilic hydrogel of self-assembling nanofiber scaffold (SAPNS) was implanted to repair a 10 mm nerve gap after sciatic nerve transection. Empty blood vessel conduit was implanted serving as control. Results showed that this novel nanofiber conduit enabled the peripheral axons to regenerate across and beyond the 10 mm gap. Motoneuron protection, axonal regeneration and remyelination were significantly enhanced with SAPNS scaffold treatments. The target reinnervation and functional recovery induced by the regenerative nerve conduit suggest that SAPNS-based conduit is highly promising application in the treatment of peripheral nerve defect. FROM THE CLINICAL EDITOR In this paper by Zhan et al, a novel self-assembling nanofiber scaffold is reported to promote regeneration of peripheral nerves in a sciatic nerve injury model. The promising results and the obvious medical need raises hope for a clinical translation of this approach hopefully in the near future.


Experimental Neurology | 2005

Survival, regeneration and functional recovery of motoneurons after delayed reimplantation of avulsed spinal root in adult rat

Huai-Yu Gu; Hong Chai; Jian-Yi Zhang; Zhibin Yao; Li-Hua Zhou; Wai-Man Wong; Iain C. Bruce; Wutian Wu

We have established that extensive reinnervation and functional recovery follow immediate reimplantation of avulsed ventral roots in adult rats. In the present study, we examined the consequences of reimplantation delayed for 2 weeks after avulsion of the C6 spinal root. Twelve and 20 weeks after delayed reimplantation, 57% and 53% of the motoneurons in the injured spinal segment survived. More than 80% of surviving motoneurons regenerated axons into the reimplanted spinal root. Cholinesterase-silver staining revealed axon terminals on endplates in the denervated muscles. The biceps muscles in reimplanted animals had atrophied less than those in animals with avulsion only, as indicated by muscle wet weight and histological appearance. After electrical stimulation of the motor cortex or the C6 spinal root, typical EMG signals were recorded in biceps of reimplanted animals. The latency of the muscle potential at 20 weeks was similar to that of sham-operated controls. Behavioral recovery was demonstrated by a grooming test and ipsilateral forepaw movements were well coordinated in both voluntary and automatic activities. These results demonstrate that ventral root reimplantation can protect severed motoneurons, enable the severed motoneurons to regenerate axons, and enhance the recovery of forelimb function even when it is delayed for 2 weeks after avulsion.


Developmental Neuroscience | 2005

Co-transplantation of schwann cells promotes the survival and differentiation of neural stem cells transplanted into the injured spinal cord.

Yuan-Shan Zeng; Ying Ding; Li-Zhi Wu; Jia-Song Guo; Hai-Biao Li; Wai-Man Wong; Wutian Wu

The present study investigates whether Schwann cells (SCs) could promote the survival and differentiation of neural stem cells in the injured spinal cord. Neural stem cells were dissociated and cloned from the hippocampal tissue of newborn rats. SCs were also dissociated and purified simultaneously from the sciatic nerves of 4-day-old rats. The results showed that the number of surviving neural stem cells and differentiated neuron-like cells was significantly increased in the co-grafted (SCs and neural stem cells) group compared with the control group (neural stem cells only). Neuron-like cells that developed axon-like processes were observed more commonly in the co-grafted group. These results demonstrate that SCs can promote the survival and differentiation of transplanted neural stem cells in the injured spinal cord.


Development | 2013

Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions

Zai Wang; Ju Cui; Wai-Man Wong; Xiuling Li; Wenqian Xue; Raozhou Lin; Jing Wang; Peigang Wang; Julian A. Tanner; Kathryn S. E. Cheah; Wutian Wu; Jian-Dong Huang

Controlled delivery of myofibril components to the appropriate sites of assembly is crucial for myofibrillogenesis. Here, we show that kinesin-1 heavy chain Kif5b plays important roles in anterograde transport of α-sarcomeric actin, non-muscle myosin IIB, together with intermediate filament proteins desmin and nestin to the growing tips of the elongating myotubes. Mice with Kif5b conditionally knocked out in myogenic cells showed aggregation of actin filaments and intermediate filament proteins in the differentiating skeletal muscle cells, which further affected myofibril assembly and their linkage to the myotendinous junctions. The expression of Kif5b in mutant myotubes rescued the localization of the affected proteins. Functional mapping of Kif5b revealed a 64-amino acid α-helix domain in the tail region, which directly interacted with desmin and might be responsible for the transportation of these proteins in a complex.


Journal of Neuropathology and Experimental Neurology | 2009

Implantation of neurotrophic factor-treated sensory nerve graft enhances survival and axonal regeneration of motoneurons after spinal root avulsion

Tak-Ho Chu; Suk-Yee Li; Anchen Guo; Wai-Man Wong; Qiuju Yuan; Wutian Wu

We previously showed that motor nerves are superior to sensory nerves in promoting axon regeneration after spinal root avulsion. It is, however, impractical to use motor nerves as grafts. One potential approach to enhancing axonal regeneration using sensory nerves is to deliver trophic factors to the graft. Here, we examined the regulation of receptors for brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, ciliary neurotrophic factor, and pleiotrophin after root avulsion in adult rats. We then tested their survival-promoting and neuroregenerative effects on spinal motoneurons. The results showed that receptors for brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were upregulated and that these trophic factors promoted survival and axonal regeneration of motoneurons when they were injected into the sensory nerve graft before implantation. In contrast, receptors for ciliary neurotrophic factor and pleiotrophin were downregulated after avulsion. Ciliary neurotrophic factor did not promote survival and axonal regeneration, whereas pleiotrophin promoted axonal regeneration but not survival of injured spinal motoneurons. Our results suggest that infusion of trophic factors into sensory nerve grafts promote motoneuron survival and axonal regeneration. The technique is technically easy and is, therefore, potentially clinically applicable.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

A self-assembling nanomaterial reduces acute brain injury and enhances functional recovery in a rat model of intracerebral hemorrhage

Lynn Yan-Hua Sang; Y Liang; Yue Li; Wai-Man Wong; David Tay; Kf So; Rutledge Ellis-Behnke; Wutian Wu; Raymond T.F. Cheung

There is no effective treatment for intracerebral hemorrhage (ICH). Intracerebral delivery of nanomaterials into the hemorrhagic lesion may be a new therapeutic strategy. In a rat model of ICH plus ultra-early hematoma aspiration, we found that locally delivered self-assembling peptide nanofiber scaffold (SAPNS) replaced the hematoma, reduced acute brain injury and brain cavity formation, and improved sensorimotor functional recovery. SAPNS serves as biocompatible material in the hemorrhagic brain cavity. Local delivery of this nanomaterial may facilitate the repair of ICH related brain injury and functional recovery. From the clinical editor: In a rat model of intracranial hemorrhage, these authors demonstrate that following ultra-early hematoma aspiration, local delivery of a self-assembling peptide nanofiber scaffold replaces the hematoma, reduces brain cavity formation, and improves sensorimotor functional recovery. Similar approaches would be welcome additions to the clinical treatment of this often devastating condition.


Developmental Neuroscience | 2003

Expression and role of low-affinity nerve growth factor receptor (p75) in spinal motor neurons of aged rats following axonal injury.

Yuanyun Xie; Zhibin Yao; Hong Chai; Wai-Man Wong; Wutian Wu

Expression of low-affinity nerve growth factor receptor (p75) and its regulation in spinal motor neurons of aged rats following axonal injury were investigated by immunocytochemical staining with antibody against p75. Under normal conditions, approximately 60% of spinal motor neurons expressed p75 in aged rats whereas no p75 expression was observed in spinal motor neurons of young adult rats. We examined the effects of spinal motor neuron injury on aged rats by two approaches, i.e. distal axotomy and spinal nerve root avulsion. A 20% increase in the number of p75-positive motor neurons was observed in aged rats 2 weeks after distal axotomy after which it returned to normal by 8 weeks post-injury and remained constant. Following root avulsion, a transient and slight up-regulation of p75 expression was observed in injured motor neurons. The number of p75-positive motor neurons decreased quickly to below normal levels 1 week after lesion and progressively declined with time post-injury, 40% by 2 weeks, 33% by 4 weeks, 23% by 8 weeks, and 5.8% by 12 weeks compared with the normal controls. This study demonstrates that p75 is re-expressed in aged spinal motor neurons. Following axonal injury in aged rats, up-regulation of p75 seems to coincide with the survival of injured motor neurons. Potential roles of re-expression of p75 in aged motor neurons are discussed.

Collaboration


Dive into the Wai-Man Wong's collaboration.

Top Co-Authors

Avatar

Wutian Wu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Qiuju Yuan

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiasong Guo

Li Ka Shing Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhibin Yao

Sun Yat-sen University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong Chai

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge