Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wai-Nang Paul Lee is active.

Publication


Featured researches published by Wai-Nang Paul Lee.


Drug Discovery Today | 2002

Metabolic profiling of cell growth and death in cancer: applications in drug discovery.

Laszlo G. Boros; Marta Cascante; Wai-Nang Paul Lee

Metabolic profiling using stable-isotope tracer technology enables the measurement of substrate redistribution within major metabolic pathways in living cells. This technique has demonstrated that transformed human cells exhibit profound metabolic shifts and that some anti-cancer drugs produce their effects by forcing the reversion of these metabolic changes. By revealing tumor-specific metabolic shifts in tumor cells, metabolic profiling enables drug developers to identify the metabolic steps that control cell proliferation, thus aiding the identification of new anti-cancer targets and screening of lead compounds for anti-proliferative metabolic effects.


American Journal of Physiology-endocrinology and Metabolism | 1998

Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose

Wai-Nang Paul Lee; Laszlo G. Boros; Joaquim Puigjaner; Sara Bassilian; Shu Lim; Marta Cascante

We present a single-tracer method for the study of the pentose phosphate pathway (PPP) using [1,2-13C2]glucose and mass isotopomer analysis. The metabolism of [1,2-13C2]glucose by the glucose-6-phosphate dehydrogenase, transketolase (TK), and transaldolase (TA) reactions results in unique pentose and lactate isotopomers with either one or two13C substitutions. The distribution of these isotopomers was used to estimate parameters of the PPP using the model of Katz and Rognstad (J. Katz and R. Rognstad. Biochemistry 6: 2227-2247, 1967). Mass and position isotopomers of ribose, and lactate and palmitate (products from triose phosphate) from human hepatoma cells (Hep G2) incubated with 30% enriched [1,2-13C2]glucose were determined using gas chromatography-mass spectrometry. After 24-72 h incubation, 1.9% of lactate molecules in the medium contained one 13C substitution ( m 1) and 10% contained two 13C substitutions ( m 2). A similar m 1-to- m 2ratio was found in palmitate as expected. Pentose cycle (PC) activity determined from incubation with [1,2-13C2]glucose was 5.73 ± 0.52% of the glucose flux, which was identical to the value of PC (5.55 ± 0.73%) determined by separate incubations with [1-13C] and [6-13C]glucose.13C was found to be distributed in four ribose isotopomers ([1-13C]-, [5-13C]-, [1,2-13C2]-, and [4,5-13C2]ribose). The observed ribose isotopomer distribution was best matched with that provided from simulation by substituting 0.032 for TK and 0.85 for TA activity relative to glucose uptake into the model of Katz and Rognstad. The use of [1,2-13C2]glucose not only permits the determination of PC but also allows estimation of relative rates through the TK and TA reactions.


FEBS Letters | 2003

Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization

Silvia Marin; Kelly Chiang; Sara Bassilian; Wai-Nang Paul Lee; Laszlo G. Boros; Josep M. Fernández-Novell; Josep J. Centelles; A. Medrano; Joan E. Rodríguez-Gil; Marta Cascante

Metabolomic characteristics in boar spermatozoa were studied using [1,2‐13C2]glucose and mass isotopomer analysis. In boar spermatozoa, glycolysis was the main pathway of glucose utilization producing lactate/pyruvate, whereas no gluconeogenesis was seen. Slight glycogen synthesis through the direct pathway and some incorporation of pyruvate into the Krebs cycle also took place. Neither RNA ribose‐5‐phosphate nor fatty acid synthesis from glucose occurred despite the detection of pyruvate dehydrogenase activity. In contrast to the known metabolic activities in dog sperm, boar spermatozoa have low levels of energy production and biosynthetic activities suggesting two different metabolic profiles for the two different phenotypes.


Pancreas | 2001

Genistein inhibits nonoxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: a new mechanism of controlling tumor growth.

Laszlo G. Boros; Sara Bassilian; Shu Lim; Wai-Nang Paul Lee

Genistein is a plant isoflavonoid bearing potent tumor growth–regulating characteristics. This effect of genistein has been attributed partially to its tyrosine kinase–regulating properties, resulting in cell-cycle arrest and limited angiogenesis. Genistein has been used in chemotherapy-resistant cases of advanced leukemia with promising results. Here we demonstrate that genistein primarily affects nucleic acid synthesis and glucose oxidation in tumor cells using the [1,2-13C2]glucose isotope as the single tracer and gas chromatography/mass spectrometry to follow various intracellular glucose metabolites. The ribose fraction of RNA demonstrated a rapid 4.6%, 16.4%, and 46.3% decrease in isotope uptake through the nonoxidative branch of the pentose cycle and a sharp 4.8%, 24.6%, and 48% decrease in 13CO2 release from glucose after 2, 20, and 200 &mgr;mol/L genistein treatment, respectively. Fatty acid synthesis and the 13C enrichment of acetyl units were not significantly affected by genistein treatment. De novo glycogen synthesis from media glucose was not detected in cultured MIA cells. It can be concluded from these studies that genistein controls tumor growth primarily through the regulation of glucose metabolism, specifically targeting glucose carbon incorporation into nucleic acid ribose through the nonoxidative steps of the pentose cycle, which represents a new paradigm for the antiproliferative action of a plant phytochemical.


Nutrition and Cancer | 2000

Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation.

Marta Cascante; Josep J. Centelles; Richard L. Veech; Wai-Nang Paul Lee; Laszlo G. Boros

Abstract: Metabolic control analysis predicts that stimulators of transketolase enzyme synthesis such as thiamin (vitamin B-1) support a high rate of nucleic acid ribose synthesis necessary for tumor cell survival, chemotherapy resistance, and proliferation. Metabolic control analysis also predicts that transketolase inhibitor drugs will have the opposite effect on tumor cells. This may have important implications in the nutrition and future treatment of patients with cancer.


Carcinogenesis | 2009

Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets.

Pedro Vizán; Susana Sánchez-Tena; Gema Alcarraz-Vizán; Marta Soler; Ramon Messeguer; M. Dolors Pujol; Wai-Nang Paul Lee; Marta Cascante

Angiogenesis is a fundamental process to normal and abnormal tissue growth and repair, which consists of recruiting endothelial cells toward an angiogenic stimulus. The cells subsequently proliferate and differentiate to form endothelial tubes and capillary-like structures. Little is known about the metabolic adaptation of endothelial cells through such a transformation. We studied the metabolic changes of endothelial cell activation by growth factors using human umbilical vein endothelial cells (HUVECs), [1,2-(13)C(2)]-glucose and mass isotopomer distribution analysis. The metabolism of [1,2-(13)C(2)]-glucose by HUVEC allows us to trace many of the main glucose metabolic pathways, including glycogen synthesis, the pentose cycle and the glycolytic pathways. So we established that these pathways were crucial to endothelial cell proliferation under vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) stimulation. A specific VEGF receptor-2 inhibitor demonstrated the importance of glycogen metabolism and pentose cycle pathway. Furthermore, we showed that glycogen was depleted in a low glucose medium, but conserved under hypoxic conditions. Finally, we demonstrated that direct inhibition of key enzymes to glycogen metabolism and pentose phosphate pathways reduced HUVEC viability and migration. In this regard, inhibitors of these pathways have been shown to be effective antitumoral agents. To sum up, our data suggest that the inhibition of metabolic pathways offers a novel and powerful therapeutic approach, which simultaneously inhibits tumor cell proliferation and tumor-induced angiogenesis.


Pancreas | 2002

A Metabolic Hypothesis of Cell Growth and Death in Pancreatic Cancer

Laszlo G. Boros; Wai-Nang Paul Lee; Vay Liang W. Go

Introduction Tumor cells, just as other living cells, possess the potential for proliferation, differentiation, cell cycle arrest, and apoptosis. There is a specific metabolic phenotype associated with each of these conditions, characterized by the production of both energy and special substrates necessary for the cells to function in that particular state. Unlike that of normal living cells, the metabolic phenotype of tumor cells supports the proliferative state. Aim To present the metabolic hypothesis that (1) cell transformation and tumor growth are associated with the activation of metabolic enzymes that increase glucose carbon utilization for nucleic acid synthesis, while enzymes of the lipid and amino acid synthesis pathways are activated in tumor growth inhibition, and (2) phosphorylation and allosteric and transcriptional regulation of intermediary metabolic enzymes and their substrate availability together mediate and sustain cell transformation from one condition to another. Conclusion Evidence is presented that demonstrates opposite changes in metabolic phenotypes induced by TGF-&bgr;, a cell-transforming agent, and tumor growth-inhibiting phytochemicals such as genistein and Avemar, or novel synthetic anti-leukemic drugs such as STI571 (Gleevec). Intermediary metabolic enzymes that mediate the growth signaling pathways and promote malignant cell transformation may serve as high-efficacy nongenetic novel targets for cancer therapies.


Journal of Biological Chemistry | 1998

Fatty Acid Cycling in Human Hepatoma Cells and the Effects of Troglitazone

Wai-Nang Paul Lee; Shu Lim; Sara Bassilian; E. A. Bergner; John Edmond

Fatty acid cycling by chain shortening/elongation in the peroxisomes is an important source of fatty acids for membrane lipid synthesis. Its role in the homeostasis of nonessential fatty acids is poorly understood. We report here a study on the cycling of saturated fatty acids and the effects of troglitazone in HepG2 cells in culture using [U-13C]stearate or [U-13C]oleate and mass isotopomer analysis. HepG2 cells were grown in the presence of 0.7 mmol/liter [U-13C]stearate or [U-13C]oleate, and in the presence and absence of 50 μm troglitazone for 72 h. Fatty acids extracted from cell pellets after saponification were analyzed by gas chromatography/mass spectrometry. Peroxisomal β-oxidation of uniformly 13C-labeled stearate (C18:0) and oleate (C18:1) resulted in chain shortening and produced uniformly labeled palmitate (C16:0) and palmitoleate (C16:1). In untreated cells, 16% of C16:0 was derived from C18:0 and 26% of C16:1 from C18:1 by chain shortening. Such contributions were significantly increased by troglitazone to 23.6 and 36.6%, respectively (p < 0.001). Desaturation of stearate contributed 67% of the oleate, while reduction of oleate contributed little to stearate (2%). The desaturation of C18:0 to C18:1 was not affected by troglitazone. Our results demonstrated a high degree of recycling of C18:0 and C18:1 to C16:0 and C16:1 through chain shortening and desaturation. Chain shortening was accompanied by chain elongation in the synthesis of other long chain fatty acids. Troglitazone specifically increased recycling by peroxisomal β-oxidation of C18 to C16 fatty acids, and the interconversion of long chain fatty acids was associated with reduced de novo lipogenesis.


Journal of Applied Physiology | 2008

Determination of protein synthesis in vivo using labeling from deuterated water and analysis of MALDI-TOF spectrum.

Gary Guishan Xiao; Meena Garg; Shu Lim; Derek Wong; Vay Liang W. Go; Wai-Nang Paul Lee

This paper describes a method of determining protein synthesis and turnover using in vivo labeling of protein with deuterated water and analysis of matrix-assisted laser desorption time-of-flight mass spectrometer (MALDI-TOF) spectrum. Protein synthesis is calculated using mass isotopomer distribution analysis instead of precursor to product amino acid enrichment ratio. During protein synthesis, the incorporation of deuterium from water changes the mass isotopomer distribution (isotope envelop) according to the number of deuterium atoms (0, 1, 2, 3, etc.) incorporated, and the distribution of the protein with 0, 1, 2, 3,... atoms of deuterium follows a binomial distribution. A mathematical algorithm by which the distribution of deuterium isotopomers can be extracted from the observed MALDI-TOF spectrum is presented. Since deuterium isotopomers are unique to newly synthesized proteins, the quantitation of their distribution provides a method for the quantitation of newly synthesized proteins. The combined use of postsource decay sequence identification and mass isotopomer distribution analysis makes the use of in vivo labeling with deuterated water a precise method to determine specific protein synthesis.


Molecular Genetics and Metabolism | 2002

Oxygen-induced metabolic changes and transdifferentiation in immature fetal rat lung lipofibroblasts

Laszlo G. Boros; John S. Torday; Wai-Nang Paul Lee; Virender K. Rehan

Preterm infants lack adequate surfactant production and often require oxygen support for adequate oxygenation. Prolonged oxygen treatment leads to the development of bronchopulmonary dysplasia (BPD), a disease process characterized by the blunting of alveolarization and proliferation of myofibroblasts. In the present study, we investigated metabolic adaptive changes in cultured fibroblasts isolated from immature (d18) and near-term (d21), fetal rat lungs in response to normoxic (21%) and hyperoxic (95%) exposures. We used the [1,2-13C2]D-glucose tracer and gas chromatography/mass spectrometry to characterize glucose carbon redistribution between the nucleic acid ribose, lactate, and palmitate synthetic pathways, and reverse transcriptase-polymerase chain reaction to assess adipose differentiation related protein (ADRP) mRNA expression in response to hyperoxic exposure. Exposure to hyperoxia at each passage caused decrease (*, p<0.05 vs. 21% O2) in ADRP mRNA expression in the d18 fibroblasts. This passage-dependent transdifferentiation is accompanied by a moderate (9-20%) increase in the synthesis of nucleic acid ribose from glucose through the non-oxidative steps of the pentose cycle. In contrast, d18 fibroblasts showed over an 85% decrease in the de novo synthesis of palmitate from glucose, while d21 fibroblasts showed a less pronounced 32-38% decrease in de novo lipid synthesis in hyperoxia-exposed cultures. It can be concluded from these studies that: (1) there is a maturation dependent sensitivity to hyperoxia; (2) transdifferentiation of flbroblast as demonstrated by changes in ADRP expression is accompanied by metabolic enzymes changes affecting ribose acid synthesis from glucose, and (3) hyperoxia specifically inhibits lipogenesis from glucose. Hyperoxia-induced metabolic changes thus play a key role in the transdifferentiation of lung fibroblasts to myofibroblasts and the pathogenesis of BPD.

Collaboration


Dive into the Wai-Nang Paul Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara Bassilian

University of California

View shared research outputs
Top Co-Authors

Avatar

Shu Lim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Torday

University of California

View shared research outputs
Top Co-Authors

Avatar

Virender K. Rehan

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Guishan Xiao

Creighton University Medical Center

View shared research outputs
Top Co-Authors

Avatar

E. A. Bergner

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge