Waja Wegner
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Waja Wegner.
PLOS ONE | 2012
Waja Wegner; Birgitta C. Burckhardt; Gerhard Burckhardt; Maja Henjakovic
Background Organic anion transporters 1 (Oat1) and 3 (Oat3) mediate the transport of organic anions, including frequently prescribed drugs, across cell membranes in kidney proximal tubule cells. In rats, these transporters are known to be male-dominant and testosterone-dependently expressed. The molecular mechanisms that are involved in the sex-dependent expression are unknown. Our aim was to identify genes that show a sex-dependent expression and could be involved in male-dominant regulation of Oat1 and Oat3. Methodology/Principal Findings Promoter activities of Oat1 and Oat3 were analyzed using luciferase assays. Expression profiling was done using a SurePrint G3 rat GE 8×60K microarray. RNA was isolated from renal cortical slices of four adult rats per sex. To filter the achieved microarray data for genes expressed in proximal tubule cells, transcription database alignment was carried out. We demonstrate that predicted androgen response elements in the promoters of Oat1 and Oat3 are not functional when the promoters were expressed in OK cells. Using microarray analyses we analyzed 17,406 different genes. Out of these genes, 56 exhibit a sex-dependent expression in rat proximal tubule cells. As genes potentially involved in the regulation of Oat1 and Oat3 expression, we identified, amongst others, the male-dominant hydroxysteroid (17-beta) dehydrogenase 1 (Hsd17b1), B-cell CLL/lymphoma 6 (BCL6), and polymerase (RNA) III (DNA directed) polypeptide G (Polr3g). Moreover, our results revealed that the transcription factor BCL6 activates promoter constructs of Oat1 and Oat3. Conclusion The results indicate that the male-dominant expression of both transporters, Oat1 and Oat3, is possibly not directly regulated by the classical androgen receptor mediated transcriptional pathway but appears to be regulated by the transcription factor BCL6.
Genetic Vaccines and Therapy | 2009
Rita Hahnewald; Waja Wegner; Jochen Reiss
In a mouse model for molybdenum cofactor deficiency as an example for an inherited metabolic disease we have determined the dosage of recombinant AAV necessary to rescue the lethal deficiency phenotype. We demonstrated long-term expression of different expression cassettes delivered in a chimeric AAV capsid of serotype 1/2 and compared different routes of application. We then studied the effect of double and triple injections at different time points after birth and found a short neonatal window for non-response of the immune system. Exposition with rAAV capsids within this window allows transgene expression after a second rAAV transduction later. However, exposition within this window does not trigger immunotolerance to the viral capsid, which limits rAAV-mediated refurbishment of the transgene to only one more application outside this permissive window.
Scientific Reports | 2017
Waja Wegner; Peter Ilgen; Carola Gregor; Joris van Dort; Alexander C. Mott; Heinz Steffens; Katrin I. Willig
The study of proteins in dendritic processes within the living brain is mainly hampered by the diffraction limit of light. STED microscopy is so far the only far-field light microscopy technique to overcome the diffraction limit and resolve dendritic spine plasticity at superresolution (nanoscopy) in the living mouse. After having tested several far-red fluorescent proteins in cell culture we report here STED microscopy of the far-red fluorescent protein mNeptune2, which showed best results for our application to superresolve actin filaments at a resolution of ~80 nm, and to observe morphological changes of actin in the cortex of a living mouse. We illustrate in vivo far-red neuronal actin imaging in the living mouse brain with superresolution for time periods of up to one hour. Actin was visualized by fusing mNeptune2 to the actin labels Lifeact or Actin-Chromobody. We evaluated the concentration dependent influence of both actin labels on the appearance of dendritic spines; spine number was significantly reduced at high expression levels whereas spine morphology was normal at low expression.
Experimental Diabetes Research | 2015
Andrea Babelova; Birgitta C. Burckhardt; Waja Wegner; Gerhard Burckhardt; Maja Henjakovic
The aim of this study was to identify sex-dependent expression of renal transporter mRNA in lean and obese Zucker spontaneously hypertensive fatty (ZSF1) rats and to investigate the interaction of the most altered transporter, organic anion transporter 2 (Oat2), with diabetes-relevant metabolites and drugs. Higher incidence of glomerulosclerosis, tubulointerstitial fibrosis, and protein casts in Bowmans space and tubular lumen was detected by PAS staining in obese male compared to female ZSF1 rats. Real-time PCR on RNA isolated from kidney cortex revealed that Sglt1-2, Oat1-3, and Oct1 were higher expressed in kidneys of lean females. Oct2 and Mrp2 were higher expressed in obese males. Renal mRNA levels of transporters were reduced with diabetic nephropathy in females and the expression of transcription factors Hnf1β and Hnf4α in both sexes. The highest difference between lean and obese ZSF1 rats was found for Oat2. Therefore, we have tested the interaction of human OAT2 with various substances using tritium-labeled cGMP. Human OAT2 showed no interaction with diabetes-related metabolites, diabetic drugs, and ACE-inhibitors. However, OAT2-dependent uptake of cGMP was inhibited by furosemide. The strongly decreased expression of Oat2 and other transporters in female diabetic ZSF1 rats could possibly impair renal drug excretion, for example, of furosemide.
Croatian Medical Journal | 2015
Davorka Breljak; Hrvoje Brzica; Ivana Vrhovac; Vedran Micek; Dean Karaica; Marija Ljubojević; Ankica Sekovanić; Jasna Jurasović; Dubravka Rašić; Maja Peraica; Mila Lovrić; Nina Schnedler; Maja Henjakovic; Waja Wegner; Gerhard Burckhardt; Birgitta C. Burckhardt; Ivan Sabolić
Aim To investigate whether the sex-dependent expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) changes in a rat model of ethylene glycol (EG)-induced hyperoxaluria. Methods Rats were given tap water (12 males and 12 females; controls) or EG (12 males and 12 females; 0.75% v/v in tap water) for one month. Oxaluric state was confirmed by biochemical parameters in blood plasma, urine, and tissues. Expression of sat-1 and rate-limiting enzymes of oxalate synthesis, alcohol dehydrogenase 1 (Adh1) and hydroxy-acid oxidase 1 (Hao1), was determined by immunocytochemistry (protein) and/or real time reverse transcription polymerase chain reaction (mRNA). Results EG-treated males had significantly higher (in μmol/L; mean ± standard deviation) plasma (59.7 ± 27.2 vs 12.9 ± 4.1, P < 0.001) and urine (3716 ± 1726 vs 241 ± 204, P < 0.001) oxalate levels, and more abundant oxalate crystaluria than controls, while the liver and kidney sat-1 protein and mRNA expression did not differ significantly between these groups. EG-treated females, in comparison with controls had significantly higher (in μmol/L) serum oxalate levels (18.8 ± 2.9 vs 11.6 ± 4.9, P < 0.001), unchanged urine oxalate levels, low oxalate crystaluria, and significantly higher expression (in relative fluorescence units) of the liver (1.59 ± 0.61 vs 0.56 ± 0.39, P = 0.006) and kidney (1.77 ± 0.42 vs 0.69 ± 0.27, P < 0.001) sat-1 protein, but not mRNA. The mRNA expression of Adh1 was female-dominant and that of Hao1 male-dominant, but both were unaffected by EG treatment. Conclusions An increased expression of hepatic and renal oxalate transporting protein sat-1 in EG-treated female rats could protect from hyperoxaluria and oxalate urolithiasis.
American Journal of Physiology-renal Physiology | 2014
Waja Wegner; Gerhard Burckhardt; Maja Henjakovic
The human organic anion transporter 1 (OAT1) is crucial for the excretion of organic anions in renal proximal tubular cells and has been classified as a clinically relevant transporter in the kidneys. Our previous study indicated that renal male-predominant expression of rat Oat1 and Oat3 appears to be regulated by transcription factor B-cell CLL/lymphoma 6 (BCL6). The aim of this study was to characterize the effect of BCL6 on human OAT1 promoter and on the transcription of OAT1 mediated by hepatocyte nuclear factor-1α (HNF-1α). Luciferase assays were carried out in opossum kidney (OK) cells transiently transfected with promoter constructs of OAT1, expression vectors for BCL6 and HNF-1α, and the empty control vectors. BCL6 and HNF-1α binding on OAT1 promoter was analyzed using electrophoretic mobility shift assay (EMSA). Protein expression of HNF-1α was investigated by Western blot analysis. Site-directed mutagenesis was used to introduce mutations into BCL6 and HNF-1α binding sites within the OAT1 promoter. BCL6 enhanced the promoter activity of OAT1 independently of predicted BCL6 binding sites but was dependent on HNF-1α response element and HNF-1α protein. Coexpression of BCL6 and HNF-1α induced an additive effect on OAT1 promoter activation compared with BCL6 or HNF-1α alone. BCL6 does not bind directly or indirectly to OAT1 promoter but increases the protein expression of HNF-1α and thereby indirectly enhances OAT1 gene transcription. BCL6 constitutes a promising candidate gene for the regulation of human OAT1 transcription and other renal and/or hepatic drug transporters that have been already shown to be activated by HNF-1α.
Scientific Reports | 2018
Waja Wegner; Alexander C. Mott; Seth G. N. Grant; Heinz Steffens; Katrin I. Willig
The post-synaptic density (PSD) is an electron dense region consisting of ~1000 proteins, found at the postsynaptic membrane of excitatory synapses, which varies in size depending upon synaptic strength. PSD95 is an abundant scaffolding protein in the PSD and assembles a family of supercomplexes comprised of neurotransmitter receptors, ion channels, as well as signalling and structural proteins. We use superresolution STED (STimulated Emission Depletion) nanoscopy to determine the size and shape of PSD95 in the anaesthetised mouse visual cortex. Adult knock-in mice expressing eGFP fused to the endogenous PSD95 protein were imaged at time points from 1 min to 6 h. Superresolved large assemblies of PSD95 show different sub-structures; most large assemblies were ring-like, some horse-shoe or figure-8 shaped, and shapes were continuous or made up of nanoclusters. The sub-structure appeared stable during the shorter (minute) time points, but after 1 h, more than 50% of the large assemblies showed a change in sub-structure. Overall, these data showed a sub-morphology of large PSD95 assemblies which undergo changes within the 6 hours of observation in the anaesthetised mouse.
Journal of Pharmaceutical Sciences | 2014
Yohannes Hagos; Waja Wegner; Annett Kuehne; Saskia Floerl; Venkata V.V.R. Marada; Gerhard Burckhardt; Maja Henjakovic
The FASEB Journal | 2014
Maja Henjakovic; Waja Wegner; Birgitta C. Burckhardt; Gerhard Burckhardt
The FASEB Journal | 2013
Maja Henjakovic; Waja Wegner; Birgitta C. Burckhardt; Gerhard Burckhardt