Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Waldemar Hoffmann is active.

Publication


Featured researches published by Waldemar Hoffmann.


Nature Chemistry | 2016

An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies

Jongcheol Seo; Waldemar Hoffmann; Stephan Warnke; Xing Huang; Sandy Gewinner; Wieland Schöllkopf; Michael T. Bowers; Gert von Helden; Kevin Pagel

Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimers and Parkinsons disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry-mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4-9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.


Angewandte Chemie | 2016

Retention of Native Protein Structures in the Absence of Solvent: A Coupled Ion Mobility and Spectroscopic Study

Jongcheol Seo; Waldemar Hoffmann; Stephan Warnke; Michael T. Bowers; Kevin Pagel; Gert von Helden

Abstract Can the structures of small to medium‐sized proteins be conserved after transfer from the solution phase to the gas phase? A large number of studies have been devoted to this topic, however the answer has not been unambiguously determined to date. A clarification of this problem is important since it would allow very sensitive native mass spectrometry techniques to be used to address problems relevant to structural biology. A combination of ion‐mobility mass spectrometry with infrared spectroscopy was used to investigate the secondary and tertiary structure of proteins carefully transferred from solution to the gas phase. The two proteins investigated are myoglobin and β‐lactoglobulin, which are prototypical examples of helical and β‐sheet proteins, respectively. The results show that for low charge states under gentle conditions, aspects of the native secondary and tertiary structure can be conserved.


Angewandte Chemie | 2017

Glycan Fingerprinting via Cold-Ion Infrared Spectroscopy

Eike Mucha; Ana Isabel González Flórez; Mateusz Marianski; Daniel Thomas; Waldemar Hoffmann; Weston B. Struwe; Heung Sik Hahm; Sandy Gewinner; Wieland Schöllkopf; Peter H. Seeberger; Gert von Helden; Kevin Pagel

The diversity of stereochemical isomers present in glycans and glycoconjugates poses a formidable challenge for comprehensive structural analysis. Typically, sophisticated mass spectrometry (MS)-based techniques are used in combination with chromatography or ion-mobility separation. However, coexisting structurally similar isomers often render an unambiguous identification impossible. Other powerful techniques such as gas-phase infrared (IR) spectroscopy have been limited to smaller glycans, since conformational flexibility and thermal activation during the measurement result in poor spectral resolution. This limitation can be overcome by using cold-ion spectroscopy. The vibrational fingerprints of cold oligosaccharide ions exhibit a wealth of well-resolved absorption features that are diagnostic for minute structural variations. The unprecedented resolution of cold-ion spectroscopy coupled with tandem MS may render this the key technology to unravel complex glycomes.


Journal of the American Society for Mass Spectrometry | 2017

From Compact to String—The Role of Secondary and Tertiary Structure in Charge-Induced Unzipping of Gas-Phase Proteins

Stephan Warnke; Waldemar Hoffmann; Jongcheol Seo; Erwin De Genst; Gert von Helden; Kevin Pagel

AbstractIn the gas phase, protein ions can adopt a broad range of structures, which have been investigated extensively in the past using ion mobility-mass spectrometry (IM-MS)-based methods. Compact ions with low number of charges undergo a Coulomb-driven transition to partially folded species when the charge increases, and finally form extended structures with presumably little or no defined structure when the charge state is high. However, with respect to the secondary structure, IM-MS methods are essentially blind. Infrared (IR) spectroscopy, on the other hand, is sensitive to such structural details and there is increasing evidence that helices as well as β-sheet-like structures can exist in the gas phase, especially for ions in low charge states. Very recently, we showed that also the fully extended form of highly charged protein ions can adopt a distinct type of secondary structure that features a characteristic C5-type hydrogen bond pattern. Here we use a combination of IM-MS and IR spectroscopy to further investigate the influence of the initial, native conformation on the formation of these structures. Our results indicate that when intramolecular Coulomb-repulsion is large enough to overcome the stabilization energies of the genuine secondary structure, all proteins, regardless of their sequence or native conformation, form C5-type hydrogen bond structures. Furthermore, our results suggest that in highly charged proteins the positioning of charges along the sequence is only marginally influenced by the basicity of individual residues. Graphical Abstractᅟ


Current Opinion in Structural Biology | 2017

Ion mobility-mass spectrometry and orthogonal gas-phase techniques to study amyloid formation and inhibition

Waldemar Hoffmann; Gert von Helden; Kevin Pagel

Amyloidogenic peptide oligomers are responsible for a variety of neurodegenerative disorders such as Alzheimers and Parkinsons disease. Due to their dynamic, polydisperse, and polymorphic nature, these oligomers are very challenging to characterize using traditional condensed-phase methods. In the last decade, ion mobility-mass spectrometry (IM-MS) and related gas-phase techniques have emerged as a powerful alternative to disentangle the structure and assembly characteristics of amyloid forming systems. This review highlights recent advances in which IM-MS was used to characterize amyloid oligomers and their underlying assembly pathway. In addition, we summarize recent studies in which IM-MS was used to size- and mass-select species for a further spectroscopic investigation and outline the potential of IM-MS as a tool for the screening of amyloid inhibitors.


Journal of the American Chemical Society | 2018

NFGAIL Amyloid Oligomers: The Onset of Beta-Sheet Formation and the Mechanism for Fibril Formation

Waldemar Hoffmann; Kristin Folmert; Johann Moschner; Xing Huang; Hans von Berlepsch; Beate Koksch; Michael T. Bowers; Gert von Helden; Kevin Pagel

The hexapeptide NFGAIL is a highly amyloidogenic peptide, derived from the human islet amyloid polypeptide (hIAPP). Recent investigations indicate that presumably soluble hIAPP oligomers are one of the cytotoxic species in type II diabetes. Here we use thioflavin T staining, transmission electron microscopy, as well as ion mobility-mass spectrometry coupled to infrared (IR) spectroscopy to study the amyloid formation mechanism and the quaternary and secondary structure of soluble NFGAIL oligomers. Our data reveal that at neutral pH NFGAIL follows a nucleation dependent mechanism to form amyloid fibrils. During the lag phase, highly polydisperse, polymorph, and compact oligomers (oligomer number n = 2-13) as well as extended intermediates (n = 4-11) are present. IR secondary structural analysis reveals that compact conformations adopt turn-like structures, whereas extended oligomers exhibit a significant amount of β-sheet content. This agrees well with previous molecular dynamic simulations and provides direct experimental evidence that unordered off-pathway NFGAIL aggregates up to the size of at least the 13-mer as well as partially folded β-sheet containing oligomers are coexisting.


Journal of the American Society for Mass Spectrometry | 2018

Oligomerisation of Synaptobrevin-2 Studied by Native Mass Spectrometry and Chemical Cross-Linking

Sabine Wittig; Caroline Haupt; Waldemar Hoffmann; Susann Kostmann; Kevin Pagel; Carla Schmidt

AbstractSynaptobrevin-2 is a key player in signal transmission in neurons. It forms, together with SNAP25 and Syntaxin-1A, the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and mediates exocytosis of synaptic vesicles with the pre-synaptic membrane. While Synaptobrevin-2 is part of a four-helix bundle in this SNARE complex, it is natively unstructured in the absence of lipids or other SNARE proteins. Partially folded segments, presumably SNARE complex formation intermediates, as well as formation of Synaptobrevin-2 dimers and oligomers, were identified in previous studies. Here, we employ three Synaptobrevin-2 variants—the full-length protein Syb(1-116), the soluble, cytosolic variant Syb(1-96) as well as a shorter version Syb(49-96) containing structured segments but omitting a trigger site for SNARE complex formation—to study oligomerisation in the absence of interaction partners or when incorporated into the lipid bilayer of liposomes. Combining native mass spectrometry with chemical cross-linking, we find that the truncated versions show increased oligomerisation. Our findings from both techniques agree well and confirm the presence of oligomers in solution while membrane-bound Synaptobrevin-2 is mostly monomeric. Using ion mobility mass spectrometry, we could further show that lower charge states of Syb(49-96) oligomers, which most likely represent solution structures, follow an isotropic growth curve suggesting that they are intrinsically disordered. From a technical point of view, we show that the combination of native ion mobility mass spectrometry with chemical cross-linking is well-suited for the analysis of protein homo-oligomers. Graphical Abstractᅟ


Chemistry: A European Journal | 2018

To Anion–π or not to Anion–π: The Case of Anion‐Binding to Divalent Fluorinated Pyridines in the Gas Phase

Melanie Göth; Felix Witte; Marcel Quennet; Phillip Jungk; Gabriel Podolan; Dieter Lentz; Waldemar Hoffmann; Kevin Pagel; Hans-Ulrich Reissig; Beate Paulus; Christoph A. Schalley

A series of mono- and divalent fluorinated pyridine derivatives is investigated by electrospray ionization (tandem) mass spectrometry and quantum chemical calculations with respect to their capability to bind anions in the gas phase. The pyridine derivatives differ not only in valency, but also with regard to the degree of fluorination of the pyridine rings, the positions of the fluorine atoms, the rigidity of the spacers connecting the two pyridines in the divalent compounds, and the relative configuration. While the monovalent compounds did not form anion complexes, the divalent analogues exhibit anion binding even to weakly coordinating anions such as tetrafluoroborate. Three different tandem mass spectrometric experiments were applied to rank the gas-phase binding energies: (i) collision-induced dissociation (CID) experiments in a Fourier transform ion-cyclotron-resonance (FTICR) mass spectrometer on two different, simultaneously mass-selected complexes with different receptors, (ii) determination of the collision energy required to fragment 50 % of the mass-selected complexes in an ESI-QToF mass spectrometer, and (iii) CID of heterodimers formed from two different, competing pyridine receptors and indigo carmine, a dianion with two identical binding sites. All three experiments result in consistent binding energy ranking. This ranking reveals surprising features, which are not in agreement with binding through anion-π interactions. Density functional theory (DFT) calculations comparing different potential binding modes provide evidence that the ranking can instead nicely be explained, when C-H⋅⋅⋅anion interactions with the spacers are invoked. These results are supported by gas-phase IR spectroscopy and ion mobility-mass spectrometry (IM-MS) on a selected set of chloride pyridine complexes.


Journal of the American Society for Mass Spectrometry | 2014

Energy-resolved ion mobility-mass spectrometry--a concept to improve the separation of isomeric carbohydrates.

Waldemar Hoffmann; Johanna Hofmann; Kevin Pagel


Physical Chemistry Chemical Physics | 2016

Assessing the stability of alanine-based helices by conformer-selective IR spectroscopy

Waldemar Hoffmann; Mateusz Marianski; Stephan Warnke; Jongcheol Seo; Carsten Baldauf; Gert von Helden; Kevin Pagel

Collaboration


Dive into the Waldemar Hoffmann's collaboration.

Top Co-Authors

Avatar

Kevin Pagel

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jongcheol Seo

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge