Waleed Abu Al-Soud
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Waleed Abu Al-Soud.
PLOS ONE | 2010
Nadja Larsen; Finn K. Vogensen; Frans van den Berg; Dennis S. Nielsen; Anne Sofie Andreasen; Bente Klarlund Pedersen; Waleed Abu Al-Soud; Søren J. Sørensen; Lars Hestbjerg Hansen; Mogens Jakobsen
Background Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control. Methods and Findings The study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2. The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N = 20) by tag-encoded amplicon pyrosequencing of the V4 region of the 16S rRNA gene. The proportions of phylum Firmicutes and class Clostridia were significantly reduced in the diabetic group compared to the control group (P = 0.03). Furthermore, the ratios of Bacteroidetes to Firmicutes as well as the ratios of Bacteroides-Prevotella group to C. coccoides-E. rectale group correlated positively and significantly with plasma glucose concentration (P = 0.04) but not with BMIs. Similarly, class Betaproteobacteria was highly enriched in diabetic compared to non-diabetic persons (P = 0.02) and positively correlated with plasma glucose (P = 0.04). Conclusions The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota.
FEMS Microbiology Ecology | 2013
Carina Sundberg; Waleed Abu Al-Soud; Madeleine Larsson; Erik Alm; Sepehr Shakeri Yekta; Bo H. Svensson; Søren J. Sørensen; Anna Karlsson
The microbial community of 21 full-scale biogas reactors was examined using 454 pyrosequencing of 16S rRNA gene sequences. These reactors included seven (six mesophilic and one thermophilic) digesting sewage sludge (SS) and 14 (ten mesophilic and four thermophilic) codigesting (CD) various combinations of wastes from slaughterhouses, restaurants, households, etc. The pyrosequencing generated more than 160,000 sequences representing 11 phyla, 23 classes, and 95 genera of Bacteria and Archaea. The bacterial community was always both more abundant and more diverse than the archaeal community. At the phylum level, the foremost populations in the SS reactors included Actinobacteria, Proteobacteria, Chloroflexi, Spirochetes, and Euryarchaeota, while Firmicutes was the most prevalent in the CD reactors. The main bacterial class in all reactors was Clostridia. Acetoclastic methanogens were detected in the SS, but not in the CD reactors. Their absence suggests that methane formation from acetate takes place mainly via syntrophic acetate oxidation in the CD reactors. A principal component analysis of the communities at genus level revealed three clusters: SS reactors, mesophilic CD reactors (including one thermophilic CD and one SS), and thermophilic CD reactors. Thus, the microbial composition was mainly governed by the substrate differences and the process temperature.
PLOS ONE | 2011
Oezguel Inceoglu; Waleed Abu Al-Soud; Joana Falcão Salles; Alexander V. Semenov; Jan Dirk van Elsas
Background Plants selectively attract particular soil microorganisms, in particular consumers of root-excreted compounds. It is unclear to what extent cultivar type and/or growth stage affect this process. Methodology/Principal Findings DNA-based pyrosequencing was used to characterize the structure of bacterial communities in a field cropped with potato. The rhizospheres of six cultivars denoted Aveka, Aventra, Karnico, Modena, Premiere and Desiree, at three growth stages (young, flowering and senescence) were examined, in addition to corresponding bulk soils. Around 350,000 sequences were obtained (5,700 to 38,000 per sample). Across all samples, rank abundance distributions best fitted the power law model, which indicates a community composed of a few highly dominant species next to numerous rare species. Grouping of the sequences showed that members of the Actinobacteria, Alphaproteobacteria, next to as-yet-unclassified bacteria, dominated. Other groups that were consistently found, albeit at lower abundance, were Beta-, Gamma- and Deltaproteobacteria and Acidobacteria. Principal components analyses revealed that rhizosphere samples were significantly different from corresponding bulk soil in each growth stage. Furthermore, cultivar effects were found in the young plant stage, whereas these became insignificant in the flowering and senescence stages. Besides, an effect of time of season was observed for both rhizosphere and bulk soils. The analyzed rhizosphere samples of the potato cultivars were grouped into two groups, in accordance with the allocation of carbon to starch in their tubers, i.e. Aveka, Aventra and Karnico (high) versus Premiere and Desiree (low) and thus replicates per group were established. Conclusions Across all potato cultivars, the young plant stages revealed cultivar-dependent bacterial community structures, which disappeared in the flowering and senescence stages. Furthermore, Pseudomonas, Beta-, Alpha- and Deltaproteobacteria flourished under different ecological conditions than the Acidobacteria.
Journal of Biotechnology | 2012
Martha Zakrzewski; Alexander Goesmann; Sebastian Jaenicke; Sebastian Jünemann; Felix Gregor Eikmeyer; Rafael Szczepanowski; Waleed Abu Al-Soud; Søren J. Sørensen; Alfred Pühler; Andreas Schlüter
Structural composition and gene content of a biogas-producing microbial community from a production-scale biogas plant fed with renewable primary products was recently analyzed by means of a metagenome sequencing approach. To determine the transcriptionally active part of the same biogas community and to identify key transcripts for the biogas production process, the metatranscriptome of the microorganisms was sequenced for the first time. The metatranscriptome sequence dataset generated on the Genome Sequencer FLX platform is represented by 484,920 sequence reads. Taxonomic profiling of the active part of the community by classification of 16S ribosomal sequence tags revealed that members of the Euryarchaeota and Firmicutes account for the dominant phyla. Only smaller fractions of the 16S ribosomal sequence tags were assigned to the phyla Bacteroidetes, Actinobacteria and Synergistetes. Among the mRNA-derived sequence tags from the metatranscriptome dataset, transcripts encoding enzymes involved in substrate hydrolysis, acidogenesis, acetate formation and methanogenesis could be identified. Transcripts for enzymes functioning in methanogenesis are among the most abundant mRNA tags indicating that the corresponding pathway is very active in the methanogenic sub-community. As a frame of reference for evaluation of metatranscriptome sequence data, the 16S rDNA-based taxonomic profile of the community was analyzed by means of high-throughput 16S rDNA amplicon sequencing. Processing of the obtained amplicon reads resulted in 18,598 high-quality 16S rDNA sequences covering the V3-V4 hypervariable region of the 16S rRNA gene. Comparison of the taxonomic profiles deduced from 16S rDNA amplicon sequences and the metatranscriptome dataset indicates a high transcriptional activity of archaeal species. Overall, it was shown that the most abundant species dominating the community also contributed the majority of the transcripts. In the future, key transcripts for the biogas production process will provide valuable markers for evaluation of the performance of biogas-producing microbial communities with the objective to optimize the biotechnology of this process.
Applied and Environmental Microbiology | 2013
Nora B. Sutton; Farai Maphosa; José Antonio Morillo; Waleed Abu Al-Soud; Alette A. M. Langenhoff; Tim Grotenhuis; Huub Rijnaarts; Hauke Smidt
ABSTRACT Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically of the phylum Euryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolineae within the Chloroflexi, as well as to Methanosaeta of the phylum Euryarchaeota, were detected. Anaerolineae and Methanosaeta are known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation.
PLOS ONE | 2011
Hanna Farnelid; Anders F. Andersson; Stefan Bertilsson; Waleed Abu Al-Soud; Lars Hestbjerg Hansen; Søren J. Sørensen; Grieg F. Steward; Åke Hagström; Lasse Riemann
Cyanobacteria are thought to be the main N2-fixing organisms (diazotrophs) in marine pelagic waters, but recent molecular analyses indicate that non-cyanobacterial diazotrophs are also present and active. Existing data are, however, restricted geographically and by limited sequencing depths. Our analysis of 79,090 nitrogenase (nifH) PCR amplicons encoding 7,468 unique proteins from surface samples (ten DNA samples and two RNA samples) collected at ten marine locations world-wide provides the first in-depth survey of a functional bacterial gene and yield insights into the composition and diversity of the nifH gene pool in marine waters. Great divergence in nifH composition was observed between sites. Cyanobacteria-like genes were most frequent among amplicons from the warmest waters, but overall the data set was dominated by nifH sequences most closely related to non-cyanobacteria. Clusters related to Alpha-, Beta-, Gamma-, and Delta-Proteobacteria were most common and showed distinct geographic distributions. Sequences related to anaerobic bacteria (nifH Cluster III) were generally rare, but preponderant in cold waters, especially in the Arctic. Although the two transcript samples were dominated by unicellular cyanobacteria, 42% of the identified non-cyanobacterial nifH clusters from the corresponding DNA samples were also detected in cDNA. The study indicates that non-cyanobacteria account for a substantial part of the nifH gene pool in marine surface waters and that these genes are at least occasionally expressed. The contribution of non-cyanobacterial diazotrophs to the global N2 fixation budget cannot be inferred from sequence data alone, but the prevalence of non-cyanobacterial nifH genes and transcripts suggest that these bacteria are ecologically significant.
Environmental Microbiology | 2014
Brajesh K. Singh; Christopher Quince; Catriona A. Macdonald; Amit N. Khachane; Nadine Thomas; Waleed Abu Al-Soud; Søren J. Sørensen; Zhili He; Duncan White; Alex Sinclair; Bill Crooks; Jizhong Zhou; Colin D. Campbell
Loss of microbial diversity is considered a major threat because of its importance for ecosystem functions, but there is a lack of conclusive evidence that diversity itself is reduced under anthropogenic stress, and about the consequences of diversity loss. Heavy metals are one of the largest, widespread pollutant types globally, and these represent a significant environmental stressor for terrestrial microbial communities. Using combined metagenomics and functional assays, we show that the compositional and functional response of microbial communities to long-term heavy metal stress results in a significant loss of diversity. Our results indicate that even at a moderate loss of diversity, some key specialized functions (carried out by specific groups) may be compromised. Together with previous work, our data suggest disproportionate impact of contamination on microbes that carry out specialized, but essential, ecosystem functions. Based on these findings, we propose a conceptual framework to explicitly consider diversity of functions and microbial functional groups to test the relationship between biodiversity and soil functions.
Applied and Environmental Microbiology | 2012
Jeanette Berg; Kristian K. Brandt; Waleed Abu Al-Soud; Peter E. Holm; Lars Hestbjerg Hansen; Søren J. Sørensen; Ole Nybroe
ABSTRACT Toxic metal pollution affects the composition and metal tolerance of soil bacterial communities. However, there is virtually no knowledge concerning the responses of members of specific bacterial taxa (e.g., phyla or classes) to metal toxicity, and contradictory results have been obtained regarding the impact of metals on operational taxonomic unit (OTU) richness. We used tag-coded pyrosequencing of the 16S rRNA gene to elucidate the impacts of copper (Cu) on bacterial community composition and diversity within a well-described Cu gradient (20 to 3,537 μg g−1) stemming from industrial contamination with CuSO4 more than 85 years ago. DNA sequence information was linked to analysis of pollution-induced community tolerance (PICT) to Cu, as determined by the [3H]leucine incorporation technique, and to chemical characterization of the soil. PICT was significantly correlated to bioavailable Cu, as determined by the results seen with a Cu-specific bioluminescent biosensor strain, demonstrating a specific community response to Cu. The relative abundances of members of several phyla or candidate phyla, including the Proteobacteria, Bacteroidetes, Verrumicrobia, Chloroflexi, WS3, and Planctomycetes, decreased with increasing bioavailable Cu, while members of the dominant phylum, the Actinobacteria, showed no response and members of the Acidobacteria showed a marked increase in abundance. Interestingly, changes in the relative abundances of classes frequently deviated from the responses of the phyla to which they belong. Despite the apparent Cu impacts on Cu resistance and community structure, bioavailable Cu levels did not show any correlation to bacterial OTU richness (97% similarity level). Our report highlights several bacterial taxa responding to Cu and thereby provides new guidelines for future studies aiming to explore the bacterial domain for members of metal-responding taxa.
International Journal of Food Microbiology | 2012
Wafa Masoud; Finn K. Vogensen; Søren K. Lillevang; Waleed Abu Al-Soud; Søren J. Sørensen; Mogens Jakobsen
The purpose of this work was to study the bacterial communities in raw milk and in Danish raw milk cheeses using pyrosequencing of tagged amplicons of the V3 and V4 regions of the 16S rDNA and cDNA. Furthermore, the effects of acidification and ripening starter cultures, cooking temperatures and rate of acidification on survival of added Escherichia coli, Listeria innocua and Staphylococcus aureus in cheeses at different stages of ripening were studied by pyrosequencing and quantitative real time (qRT)-PCR. A high diversity of bacterial species was detected in raw milk. Lactococcus lactis, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus rhamnosus were the main bacteria detected in raw milk and cheeses. Bacteria belonging to the genera Brevibacterium, Staphylococcus, Escherichia, Weissella, Leuconostoc, Pediococcus were also detected in both 16S rDNA and cDNA obtained from raw milk and cheeses. E. coli, which was added to milk used for production of some cheeses, was detected in both DNA and RNA extracted from cheeses at different stages of ripening showing the highest percentage of the total sequence reads at 7 days of ripening and decreased again in the later ripening stages. Growth of E. coli in cheeses appeared to be affected by the cooking temperature and the rate of acidification but not by the ripening starter cultures applied or the indigenous microbiota of raw milk. Growth of L. innocua and S. aureus added to milks was inhibited in all cheeses at different stages of ripening. The use of 16S rRNA gene pyrosequencing and qRT-PCR allows a deeper understanding of the behavior of indigenous microbiota, starter cultures and pathogenic bacteria in raw milk and cheeses.
FEMS Microbiology Ecology | 2011
Annette K. Møller; Tamar Barkay; Waleed Abu Al-Soud; Søren J. Sørensen; Henrik Skov; Niels Kroer
It is well-established that atmospheric deposition transports mercury from lower latitudes to the Arctic. The role of bacteria in the dynamics of the deposited mercury, however, is unknown. We characterized mercury-resistant bacteria from High Arctic snow, freshwater and sea-ice brine. Bacterial densities were 9.4 × 10(5), 5 × 10(5) and 0.9-3.1 × 10(3) cells mL(-1) in freshwater, brine and snow, respectively. Highest cultivability was observed in snow (11.9%), followed by freshwater (0.3%) and brine (0.03%). In snow, the mercury-resistant bacteria accounted for up to 31% of the culturable bacteria, but <2% in freshwater and brine. The resistant bacteria belonged to the Alpha-, Beta- and Gammaproteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes. Resistance levels of most isolates were not temperature dependent. Of the resistant isolates, 25% reduced Hg(II) to Hg(0). No relation between resistance level, ability to reduce Hg(II) and phylogenetic group was observed. An estimation of the potential bacterial reduction of Hg(II) in snow suggested that it was important in the deeper snow layers where light attenuation inhibited photoreduction. Thus, by reducing Hg(II) to Hg(0), mercury-resistant bacteria may limit the supply of substrate for methylation processes and, hence, contribute to lowering the risk that methylmercury is being incorporated into the Arctic food chains.