Waleed Ahmed El-Said
Assiut University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Waleed Ahmed El-Said.
Biosensors and Bioelectronics | 2009
Waleed Ahmed El-Said; Cheol-Heon Yea; Hyunhee Kim; Byung-Keun Oh; Jeong-Woo Choi
HeLa cells directly immobilized on gold-patterned silicon substrate were used to assess the biological toxicity of anticancer drugs (hydroxyurea and cyclophosphamide). Immobilization of HeLa cells was confirmed by optical microscopy, and cell growth, viability and drug-related toxicity were examined by cyclic voltammetry and potentiometric stripping analysis. The voltammetric behaviors of HeLa cells displayed a quasi-reversible pattern with the peak current exhibiting a linear relationship with cell number. The attached living cells were exposed to different concentrations of hydroxyurea and cyclophosphamide as anticancer drugs, which induced the change of cyclic voltammetry current peak. As the exposed concentration of anticancer drugs was increased, the change of current peak was increased, which indicates the decrease of cell viability. Trypan Blue dyeing was performed to confirm the results of the effect of anticancer drugs on the cell viability which was obtained from cyclic voltammetry assay. The proposed direct cell immobilization method technique can be applied to the fabrication of cell chip for diagnosis, drug detection, and on-site monitoring.
Biomaterials | 2012
Md. Abdul Kafi; Waleed Ahmed El-Said; Tae-Hyung Kim; Jeong-Woo Choi
In this paper, a method was introduced for the fabrication of vertically and spatially-controlled peptide nanostructures that enhance cell adhesion, proliferation, spreading on artificial surfaces. The RGD nanostructures with different heights were fabricated on gold surfaces by self-assembly technique through a nanoporous alumina mask composed of nanoscale-controlled pores. Pore diameter and spatial distribution were controlled by manipulating the pore widening time at a constant voltage during the mask fabrication process. Two-dimensional RGD nanodot, three-dimensional RGD nanorod, and RGD nanopillar arrays were carried out using various concentrations of RGD peptide solution, self-assembly times, and pore sizes, which were 74 nm, 63 nm, and 43 nm in diameter, respectively. The fabricated RGD nanodot, nanorod, and nanopillar arrays were utilized as a cell adhesion layer to evaluate the cell adhesion force, adhesion speed, spreading assay, and phosphorylation of cofilin protein in PC12, HeLa, and HEK293T normal cells. Among the three different nanostructures, RGD nanopillar arrays were found to be suitable for cellular attachment, spreading, and proliferation due to the proper arrangement of the RGD motif, which mimics in vivo conditions. Hence, our newly fabricated RGD nanostructured array can be successfully applied as a bio-platform for improving cellular functions and in in vitro tissue engineering.
Biosensors and Bioelectronics | 2010
Waleed Ahmed El-Said; Tae-Hyung Kim; Hyuncheol Kim; Jeong-Woo Choi
In vitro assays have generally been carried out for cytological diagnosis and for evaluation of the cytotoxic effect of chemotherapeutic agents as an alternative to animal experiments. In this study, a method for fabrication and application of a gold nanoflower array on an ITO substrate for evaluation of the effect of chemotherapeutic agents on cancer cell behavior by the surface-enhanced Raman scattering (SERS) analysis, as well as the electrochemical detection was described. Due to the increased sensitivity provided by gold nanoflower substrates, the effect of chemotherapeutic agents at low concentration level was successfully detected based on SERS technique. This substrate was found to give enhanced Raman spectra with high surface plasmon field in the near infrared (NIR) spectral range, which minimize fluorescence interference and photo-toxicity. Cyclic voltammetry (CV) was further performed for confirmation of results obtained by SERS assay and showed increased intensity of current peaks for various concentrations at low levels. The developed Au nanoflowers modified ITO substrates developed in this study could be used as a simultaneous SERS and CV substrate to determine the effects of chemotherapeutic agents on cancer cells.
PLOS ONE | 2011
Waleed Ahmed El-Said; Tae-Hyung Kim; Hyuncheol Kim; Jeong-Woo Choi
Near-infrared surface-enhanced Raman spectroscopy (SERS) is a powerful technique for analyzing the chemical composition within a single living cell at unprecedented resolution. However, current SERS methods employing uncontrollable colloidal metal particles or non-uniformly distributed metal particles on a substrate as SERS-active sites show relatively low reliability and reproducibility. Here, we report a highly-ordered SERS-active surface that is provided by a gold nano-dots array based on thermal evaporation of gold onto an ITO surface through a nanoporous alumina mask. This new combined technique showed a broader distribution of hot spots and a higher signal-to-noise ratio than current SERS techniques due to the highly reproducible and uniform geometrical structures over a large area. This SERS-active surface was applied as cell culture system to study living cells in situ within their culture environment without any external preparation processes. We applied this newly developed method to cell-based research to differentiate cell lines, cells at different cell cycle stages, and live/dead cells. The enhanced Raman signals achieved from each cell, which represent the changes in biochemical compositions, enabled differentiation of each state and the conditions of the cells. This SERS technique employing a tightly controlled nanostructure array can potentially be applied to single cell analysis, early cancer diagnosis and cell physiology research.
Biosensors and Bioelectronics | 2012
Tae-Hyung Kim; Waleed Ahmed El-Said; Jeong-Woo Choi
Cell chip was recently developed as a simple and highly sensitive tool for the toxicity assessment of various kinds of chemicals or nano-materials. Here, we report newly discovered potential cytotoxic effects of CdSe/ZnS quantum dots (QDs) on intracellular redox environment of neural cancer cells at very low concentrations which can be only detected by cell chip technology. Green (2.1 nm in diameter) and red (6.3 nm in diameter) QDs capped with cysteamine (CA) or thioglycolic acid (TA) were found to be toxic at 100 μg/mL when assessed by trypan blue and differential pulse voltammetry (DPV). However, in case of concentration-dependent cytotoxicity, toxic effects of TA-capped QDs on human neural cells were only measured by DPV method when conventional MTT assay did not show toxicity of TA-capped QDs at low concentrations (1-10 μg/mL). Red-TA QDs and Green-TA QDs were found to decrease electrochemical signals from cells at 10 μg/mL and 5 μg/mL, respectively, while cell viability decreased at 100 μg/mL and 50 μg/mL when assessed by MTT assay, respectively. The relative decreases of cell viability determined by MTT assay were 15% and 11.9% when cells were treated with 5-50 μg/mL of Red-TA QDs and 5-30 μg/mL of Green-TA QDs, respectively. However, DPV signals decreased 37.5% and 39.2% at the same concentration range, respectively. This means that redox environment of cells is more sensitive than other components and can be easily affected by CdSe/ZnS QDs even at low concentrations. Thus, our proposed neural cell chip can be applied to detect potential cytotoxicity of various kinds of molecular imaging agents simply and accurately.
Nanotechnology | 2011
Mi Jung; Waleed Ahmed El-Said; Jeong-Woo Choi
Two-dimensional gold (Au) nanodot arrays on a transparent substrate were fabricated for imaging of living cells. A nanoporous alumina mask with large-area coverage capability was prepared by a two-step chemical wet etching process after a second anodization. Highly ordered Au nanodot arrays were formed on indium-tin-oxide (ITO) glass using very thin nanoporous alumina of approximately 200 nm thickness as an evaporation mask. The large-area Au nanodot arrays on ITO glass were modified with RGD peptide (arginine; glycine; aspartic acid) containing a cysteine (Cys) residue and then used to immobilize human cancer HeLa cells, the morphology of which was observed by confocal microscopy. The confocal micrographs of living HeLa cells on Au nanodot arrays revealed enhanced contrast and resolution, which enabled discernment of cytoplasmic organelles more clearly. These results suggest that two-dimensional Au nanodot arrays modified with RGD peptide on ITO glass have potential as a biocompatible nanobioplatform for the label-free visualization and adhesion of living cells.
Nanomedicine: Nanotechnology, Biology and Medicine | 2013
Tae-Hyung Kim; Waleed Ahmed El-Said; Jeung Hee An; Jeong-Woo Choi
UNLABELLED A cell chip composed of ITO, gold nanoparticles (GNP) and RGD-MAP-C peptide composites was fabricated to enhance the electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The structural characteristics of the fabricated surfaces were confirmed by both scanning electron microscopy and surface-enhanced Raman spectroscopy. HB1.F3 cells were allowed to attach to various composites electrodes in the cell chip and the material-dependent effects on electrochemical signals and cell proliferation were analyzed. The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to be the best material in regards to enhancing the voltammetric signals of HB1.F3 cells when exposed to cyclic voltammetry, as well as for increasing cell proliferation. Differential pulse voltammetry was performed to evaluate the adverse effects of doxorubicin on HB1.F3 cells. In these experiments, negative correlations between cell viability and chemical concentrations were obseved, which were more sensitive than MTT viability assay especially at low concentrations (<0.1 μg/mL). FROM THE CLINICAL EDITOR In this basic science study, a cell chip composed of ITO, gold nanoparticles and RGD-MAP-C peptide composites was fabricated to enhance electrochemical signals and proliferation of undifferentiated human neural stem cells (HB1.F3). The ITO/60 nm GNP/RGD-MAP-C composite electrode was found to best enhance the voltammetric signals of the studied cells.
Ultramicroscopy | 2010
Waleed Ahmed El-Said; Cheol-Heon Yea; Mi Jung; Hyuncheol Kim; Jeong-Woo Choi
In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.
Materials | 2015
Tae-Hyung Kim; Taek Sung Lee; Waleed Ahmed El-Said; Jeong-Woo Choi
Although graphene and its derivatives have been proven to be suitable for several biomedical applications such as for cancer therapy and biosensing, the use of graphene for stem cell research is a relatively new area that has only recently started to be investigated. For stem cell applications, graphene has been utilized by itself or in combination with other types of materials such as nanoparticles, nanofibers, and polymer scaffolds to take advantage of the several unique properties of graphene, such as the flexibility in size, shape, hydrophilicity, as well as its excellent biocompatibility. In this review, we will highlight a number of previous studies that have investigated the potential of graphene or its derivatives for stem cell applications, with a particular focus on guiding stem cell differentiation into specific lineages (e.g., osteogenesis, neurogenesis, and oligodendrogenesis), promoting stem cell growth, stem cell delivery/transplantation, and effective monitoring of their differentiation. We hope that this review promotes and accelerates the use of graphene-based materials for regenerative therapies, especially for stem cell-based approaches to cure various incurable diseases/disorders such as neurological diseases (e.g., Alzheimer’s disease and Parkinson’s disease), stroke, spinal cord injuries, bone/cartilage defects, and cardiovascular diseases.
Bioorganic Chemistry | 2014
Elham S. Aazam; Waleed Ahmed El-Said
Transition metal complexes compounds with Schiff bases ligand representing an important class of compounds that could be used to develop new metal-based anticancer agents and as precursors of metal NPs. Herein, 2,3-bis-[(3-ethoxy-2-hydroxybenzylidene)amino]but-2-enedinitrile Schiff base ligand and its corresponding copper/nickel complexes were synthesized. Also, we reported a facile and rapid method for synthesis nickel/copper nanoparticles based on thermal reduction of their complexes. Free ligand, its metal complexes and metals nanoparticles have been characterized based on elemental analysis, transmission electron microscopy, powder X-ray diffraction, magnetic measurements and by various spectroscopic (UV-vis, FT-IR, (1)H NMR, GC-MS) techniques. Additionally, the in vitro cytotoxic activity of free ligand and its complexes compounds were assessed against two cancer cell lines (HeLa and MCF-7 cells)and one healthy cell line (HEK293 cell). The copper complex was found to be active against these cancer cell lines at very low LD50 than the free ligand, while nickel complex did not show any anticancer activity against these cell lines. Also, the antibacterial activity of as-prepared copper nanoparticles were screened against Escherichia coli, which demonstrated minimum inhibitory concentration and minimum bactericidal concentration values lower than those values of the commercial Cu NPs as well as the previous reported values. Moreover, the synthesized nickel nanoparticles demonstrated remarkable catalytic performance toward hydrogenation of nitrobenzene that producing clean aniline with high selectivity (98%). This reactivity could be attributed to the high degree of dispersion of Ni nanoparticles.