Waleed Barakat
Zagazig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Waleed Barakat.
The Journal of Neuroscience | 2008
Sajjad Muhammad; Waleed Barakat; Stoyan Stoyanov; Sasidhar Murikinati; Huan Yang; Kevin J. Tracey; Martin Bendszus; Grazisa Rossetti; Peter P. Nawroth; Angelika Bierhaus; Markus Schwaninger
In ischemic stroke, the necrotic core is surrounded by a zone of inflammation, in which delayed cell death aggravates the initial insult. Here, we provide evidence that the receptor for advanced glycation end products (RAGE) functions as a sensor of necrotic cell death and contributes to inflammation and ischemic brain damage. The RAGE ligand high mobility group box 1 (HMGB1) was elevated in serum of stroke patients and was released from ischemic brain tissue in a mouse model of cerebral ischemia. A neutralizing anti-HMGB1 antibody and HMGB1 box A, an antagonist of HMGB1 at the receptor RAGE, ameliorated ischemic brain damage. Interestingly, genetic RAGE deficiency and the decoy receptor soluble RAGE reduced the infarct size. In vitro, expression of RAGE in (micro)glial cells mediated the toxic effect of HMGB1. Addition of macrophages to neural cultures further enhanced the toxic effect of HMGB1. To test whether immigrant macrophages in the ischemic brain mediate the RAGE effect, we generated chimeric mice by transplanting RAGE−/− bone marrow to wild-type mice. RAGE deficiency in bone marrow-derived cells significantly reduced the infarct size. Thus, HMGB1–RAGE signaling links necrosis with macrophage activation and may provide a target for anti-inflammatory therapy in stroke.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Panagiotis Bargiotas; Antje Krenz; Sheriar G. Hormuzdi; Dirk A. Ridder; Anne Herb; Waleed Barakat; Silvia Penuela; Jakob von Engelhardt; Hannah Monyer; Markus Schwaninger
Pannexin 1 (Px1, Panx1) and pannexin 2 (Px2, Panx2) form large-pore nonselective channels in the plasma membrane of cells and were suggested to play a role in the pathophysiology of cerebral ischemia. To directly test a potential contribution of pannexins in ischemia-related mechanisms, we performed experiments in Px1−/−, Px2−/−, and Px1−/−Px2−/− knockout mice. IL-1β release, channel function in astrocytes, and cortical spreading depolarization were not altered in Px1−/−Px2−/− mice, indicating that, in contrast to previous concepts, these processes occur normally in the absence of pannexin channels. However, ischemia-induced dye release from cortical neurons was lower, indicating that channel function in Px1−/−Px2−/− neurons was impaired. Furthermore, Px1−/−Px2−/− mice had a better functional outcome and smaller infarcts than wild-type mice when subjected to ischemic stroke. In conclusion, our data demonstrate that Px1 and Px2 underlie channel function in neurons and contribute to ischemic brain damage.
European Journal of Pharmacology | 2014
Waleed Barakat; Nancy Safwet; Nabila N. El-Maraghy; Mohamed N.M. Zakaria
Stroke is the second leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. The final outcome of stroke is determined not only by the volume of the ischemic core, but also by the extent of secondary brain damage inflicted to penumbral tissues by brain swelling, impaired microcirculation, and inflammation. The only drug approved for the treatment ischemic stroke is recombinant tissue plasminogen activator (rt-PA). The current study was designed to investigate the protective effects of candesartan (0.15 mg/kg, orally) and glycyrrhizin (30 mg/kg, orally) experimentally-induced ischemic brain damage in C57BL/6 mice (middle cerebral artery occlusion, MCAO) in comparison to the effects of a standard neuroprotective drug (cerebrolysin, 7.5 mg/kg, IP). All drugs were administered 30 min before and 24h after MCAO. Both candesartan and glycyrrhizin ameliorated the deleterious effects of MCAO as indicated by the improvement in the performance of the animals in behaviour tests, reduction in brain infarction, neuronal degeneration, and leukocyte infiltration. In addition, MCAO induced a significant upregulation in the different elements of the TLR pathway including TLR-2 and TLR-4, Myd88, TRIF and IRF-3 and the downstream effectors TNF-α, IL-1β, IL-6 and NF-kB. All these changes were significantly ameliorated by treatment with candesartan and glycyrrhizin. The results of the current study represent a new indication for both candesartan and glycyrrhizin in the management of ischemic stroke with effects comparable to those of the standard neuroprotective drug cerebrolysin.
Anais Da Academia Brasileira De Ciencias | 2014
Samira Saleh; Nabila N. El-Maraghy; Enji Reda; Waleed Barakat
Mangiferin, present in Mangifera indica bark, was reported to produce hypoglycemic and antidiabetic activity in an animal model of genetic type 2 diabetes and in streptozotocin diabetic rats. Its effect on diabetic insulin-resistant animals has not been investigated. The current work aimed to explore the effect of mangiferin on diabetic insulin-resistant rat model. Diabetes was induced by high-fat/high fructose diet for eight weeks followed by a subdiabetogenic dose of streptozotocin (HFD-Fr-STZ). Rats were treated with mangiferin (20 mg/kg i.p.) for 28 days starting one week after STZ and its effects were compared to the standard insulin sensitizer, rosiglitazone. HFD-Fr-STZ, induced obesity, hyperglycemia and insulin resistance accompanied by depletion in liver glycogen and dyslipidemia. Moreover, there was an elevation in serum TNF-α and a reduction in adiponectin. Mangiferin ameliorated the consequences of HFD-Fr-STZ and its actions were comparable to the effects of the standard insulin sensitizer, rosiglitazone. The results obtained in this study provide evidence that mangiferin is a possible beneficial natural compound for type 2 diabetes and metabolic disorders associated with the metabolic syndrome. This effect is mediated through improving insulin sensitivity, modulating lipid profile and reverting adipokine levels to normal.
Medicinal Chemistry Research | 2012
Tarek S. Ibrahim; Adel A. Rashad; Zakaria K. Abdel-Samii; Said A. El-Feky; Mohammed K. Abdel-Hamid; Waleed Barakat
Several new 4(3H)-1,2,3-benzotriazinone derivatives were synthesized and tested for their anti-inflammatory activity and ulcerogenic effect. A docking study on the COX-2 binding pocket has been carried out for the target compounds to rationalize the possible selectivity. Among the tested compounds, the benzotriazinones linked to either thiadiazole (8) or oxadiazole (9) evoked the highest anti-inflammatory activity as well as the best binding profiles into the COX-2 binding site.
Naunyn-schmiedebergs Archives of Pharmacology | 2009
Waleed Barakat; Oliver Herrmann; Bernd Baumann; Markus Schwaninger
The transcription factor NF-κB is activated in neurons and promotes neuronal death in cerebral ischemia. Its target genes include cytosolic phospholipase A-2 (cPLA-2), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E2 synthase-1 (mPGES-1), three genes that are involved in the synthesis of prostaglandin E2 (PGE2). In our study, oxygen glucose deprivation (OGD), an in vitro model of cerebral ischemia, activated NF-κB activity in primary cortical neurons. Furthermore, OGD and the NF-κB activator tumor necrosis factor stimulated the expression of cPLA-2, cyclooxygenase-2 (COX-2), and mPGES-1 and increased the release of PGE2 from neurons. Expression of a constitutively active IκB kinase (IKK) or the NF-κB subunit p65 in neurons stimulated the transcription of cPLA-2, COX-2, and mPGES-1. Finally, inhibition of IKK in neurons blocked the induction of the three genes involved in PGE2 synthesis in vivo. In summary, NF-κB controls the neuronal expression of three genes involved in PGE2 synthesis in cerebral ischemia.
Advances in Pharmacological Sciences | 2015
Waleed Barakat; Shimaa M. Elshazly; Amr A.A. Mahmoud
Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg) against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg). Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels failed to exert any protective effect. In addition, spirulina did not potentiate the antitumor effect of fluorouracil when they were administered concurrently. Interestingly, their combined administration resulted in a dose-dependent increase in mortality. The present study demonstrates that spirulina lacks antitumor effect against this model of solid Ehrlich carcinoma and increased mortality when combined with fluorouracil. However, the implicated mechanism is still elusive.
Journal of Toxicology | 2016
Rasha H. Abdelghany; Ebaa Mohammed; Shimaa Anis; Waleed Barakat
This study was designed to investigate the impact of oral administration of fenitrothion (10 mg/kg) on liver, kidney, brain, and lung function in rats. The effect was studied on days 7, 14, 21, 28, and 42. Our results have shown deterioration in liver function as evidenced by the elevation in serum ALT, AST, ALP, and bilirubin and reduction in albumin and hepatic glycogen. This was associated with a state of hyperglycemia and hyperlipidemia and increased prothrombin time, while hemoglobin content was reduced. In addition, the kidney function was reduced as indicated by the elevation in serum creatinine, uric acid, and BUN, while the serum levels of magnesium, potassium, and sodium were reduced. This study also showed an impairment in brain neurotransmitter (elevated 5-HT, glutamate, GABA, and reduced dopamine and norepinephrine level). This was associated with a reduction in the barrier capacity in brain and lung. Fenitrothion also caused a decrease in cholinesterase activity in serum, lung, and brain activity associated with a state of oxidative stress in all tested organs and hyperammonemia. These results support the hazards of pesticide use and shows the importance of minimizing pesticide use or discovering new safe pesticides.
European Journal of Pharmacology | 2015
Rasha H. Abdelghany; Mahmoud Nabil; mohamed mahmoud abdelaal; Waleed Barakat
Nalbuphine, a kappa-opioid agonist and mu-opioid partial agonist, has been used as an analgesic or an adjuvant with morphine to attenuate the development of morphine dependence and rewarding effect. In this study, we investigated the effect of nalbuphine on tramadol rewarding effect and antinociception. Using the conditioned place preference (CPP) paradigm in mice, we demonstrated that co-administration of nalbuphine (7mg/kg, s.c.) with tramadol (70mg/kg, s.c.) during conditioning completely blocked the CPP induced by tramadol. Co-administration of nalbuphine blocked the increase in dopamine level in the nucleus accumbens induced by tramadol. These actions were accompanied by an increase rather than attenuation of the antinociceptive effect of tramadol. These results suggest that nalbuphine could have a great potential as a pharmacotherapy for tramadol abuse.
Advances in Pharmacological Sciences | 2015
Mohamed N.M. Zakaria; Hany M. El-Bassossy; Waleed Barakat
Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs) is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE), AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE) and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS) complications in STZ-induced (50 mg/kg, IP) diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze), neuronal degeneration (Fluoro-Jade staining), AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde). These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications.