Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wali Hafezi is active.

Publication


Featured researches published by Wali Hafezi.


Science Translational Medicine | 2014

Therapeutic Inflammatory Monocyte Modulation Using Immune-Modifying Microparticles

Daniel R. Getts; Rachael L. Terry; Meghann Teague Getts; Celine Deffrasnes; Marcus Müller; Thomas Myles Ashhurst; Belal Chami; Derrick P. McCarthy; Huiling Wu; Jin Ma; Aaron Martin; Lonnie D. Shae; Paul K. Witting; Geoffrey S. Kansas; Joachim E. Kühn; Wali Hafezi; Iain L. Campbell; D. J. Reilly; Jana M. Say; Louise J. Brown; Melanie Y. White; Stuart J. Cordwell; Steven J. Chadban; Edward B. Thorp; Shisan Bao; Stephen D. Miller; Nicholas J. C. King

Negatively charged immune-modifying microparticles bind to the scavenger receptor MARCO on inflammatory monocytes, resulting in their apoptosis and reduced inflammatory damage in a range of diseases. A New Frontier in Immune Modulation Inflammatory monocytes markedly potentiate the immune pathology observed in many diseases, yet no therapy exists that specifically inhibits these cells. The therapeutic accessibility of monocytes in the bloodstream and their inherent propensity to engulf particulate material suggest that highly negatively charged microparticles might provide a readily translatable solution to this problem. These microparticles, referred to as immune-modifying microparticles (IMPs), may be derived from numerous compounds, including the biodegradable polymer poly(lactic-co-glycolic acid) (PLGA-IMP), already used in humans for inter alia dissolvable sutures. Getts et al. now show that upon infusion, IMPs bind to a receptor with a positive domain on inflammatory monocytes, resulting in monocyte sequestration in the spleen and apoptosis through a similar pathway observed for senescing leukocytes. This safe monocyte clearance pathway culminated in substantially reduced inflammatory tissue damage in mouse models of West Nile virus encephalitis, experimental autoimmune encephalomyelitis, peritonitis, colitis, and myocardial infarction. Together, the data suggest that IMPs could transform the treatment of acute inflammation. Indeed, phase 1/2 testing is planned to begin in 2014, with rapid translation supported by the availability of clinical-grade PLGA. Inflammatory monocyte-derived effector cells play an important role in the pathogenesis of numerous inflammatory diseases. However, no treatment option exists that is capable of modulating these cells specifically. We show that infused negatively charged, immune-modifying microparticles (IMPs), derived from polystyrene, microdiamonds, or biodegradable poly(lactic-co-glycolic) acid, were taken up by inflammatory monocytes, in an opsonin-independent fashion, via the macrophage receptor with collagenous structure (MARCO). Subsequently, these monocytes no longer trafficked to sites of inflammation; rather, IMP infusion caused their sequestration in the spleen through apoptotic cell clearance mechanisms and, ultimately, caspase-3–mediated apoptosis. Administration of IMPs in mouse models of myocardial infarction, experimental autoimmune encephalomyelitis, dextran sodium sulfate–induced colitis, thioglycollate-induced peritonitis, and lethal flavivirus encephalitis markedly reduced monocyte accumulation at inflammatory foci, reduced disease symptoms, and promoted tissue repair. Together, these data highlight the intricate interplay between scavenger receptors, the spleen, and inflammatory monocyte function and support the translation of IMPs for therapeutic use in diseases caused or potentiated by inflammatory monocytes.


Journal of Cell Science | 2006

The genome of HSV-1 translocates through the nuclear pore as a condensed rod-like structure

Victor Shahin; Wali Hafezi; Hans Oberleithner; Yvonne Ludwig; Barbara Windoffer; Hermann Schillers; Joachim Kuhn

Incoming herpes simplex virus type-1 (HSV-1) capsids are known to dock to the nuclear pore complex (NPC) and release their genome. It has remained elusive, however, how the huge viral DNA translocates through the comparatively small NPC channel. In the present study, the interaction of HSV-1 with NPCs was analyzed by atomic force microscopy. In addition to capsids, smaller subviral structures - most with a diameter of 35-40 nm and a length of 130-160 nm - were visualized at the cytoplasmic side of the NPC. These components differed from capsids in their adhesion and stiffness properties, and were the sole subviral structures translocated through dilated NPCs towards the nucleus. It is presumed that they are the HSV-1 genome, and that a change in NPC conformation allows translocation of this genome as a densely packaged, rodlike structure.


Antiviral Research | 2011

Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1.

Kirsten Gescher; Andreas Hensel; Wali Hafezi; Andrea Derksen; Joachim Kuhn

The polyphenole-enriched acetone-water extract R2 from the aerial parts of Rumex acetosa L. containing high amounts of oligomeric and polymeric proanthocyanidins and flavonoids was tested for antiviral activity. R2 exhibited strong antiviral activity against herpes simplex virus type-1 (HSV-1) while the replication of adenovirus 3 was not affected. By plaque reduction test and MTT assay on Vero cells, the HSV-1-specific inhibitory concentration (IC(50)) and cytotoxic concentration (CC(50)) were determined. R2 exibited an IC(50) of 0.8 μg/mL and a selectivity index (SI) (ratio of IC(50) to CC(50)) of approximately 100 when added to the virus inoculum for 1h at 37°C prior to infection. The antiviral activity was due to the presence of flavan-3-ols and oligomeric proanthocyanidins in the extract. Structure-activity analyses indicated that flavan-3-ols and proanthocyanidins with galloylation at position O-3 are highly potent compounds (SI>40), while ungalloylated compounds did not exhibit antiviral effects (SI<1). R2 and a major proanthocyanidin from R2, epicatechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate abolished virus entry into the host cell by blocking attachment to the cell surface. When added after attachment at a concentration of ≥ 12.5 μg/mL, R2 inhibited also penetration of HSV-1 into the host cell. R2 and epicatechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate were shown to directly interact with viral particles leading to the oligomerisation of envelope proteins as demonstrated for the essential viral glycoprotein gD. Using raft cultures with three-dimensional organotypic human skin equivalents it was shown that treatment of cultures with R2 after infection with HSV-1 resulted in a reduced viral spread.


PLOS Pathogens | 2012

Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection

Wali Hafezi; Eva U. Lorentzen; Bodo R. Eing; Marcus Müller; Nicholas J. C. King; Barbara G. Klupp; Thomas C. Mettenleiter; Joachim Kuhn

Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons.


Cellular Microbiology | 2013

Heparin increases the infectivity of Human Papillomavirus type 16 independent of cell surface proteoglycans and induces L1 epitope exposure

Carla Cerqueira; Yan Liu; Lena Kühling; Wengang Chai; Wali Hafezi; Toin H. van Kuppevelt; Joachim E. Kühn; Ten Feizi; Mario Schelhaas

Human Papillomaviruses (HPVs) are the etiological agents of cervical cancer, and HPV‐16 is the most prevalent type. Several HPVs require heparan sulfate proteoglycans (HSPGs) for cell binding. Here, we analyse the phenomenon that preincubation of HPV‐16 with increasing concentrations of heparin results in partial restoration rather than more efficient inhibition of infection. While corroborating that the HSPGs are cell‐binding receptors for HPV‐16, heparin‐preincubated virus bound to the extracellular matrix (ECM) via laminin‐332. Furthermore, the interaction of virions with heparin, a representative of the highly sulfated S‐domains of heparan sulfate (HS) chains of HSPGs, allowed HPV‐16 infection in the absence of cell surface HSPGs. Therefore, we concluded that specific glycan moieties but not specific HSPG protein backbones are required for infection. The increased binding of an epitope‐specific antibody to the viral capsid after heparin binding suggested that initial conformational changes in the HPV‐16 virion occur during infection by interaction with‘heparin‐like’ domains of cellular HSPGs. We propose that HS sequences with specific sulfation patterns are required to facilitate HPV‐16 infection.


Journal of Cell Science | 2008

Exceptional mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy

Ivan Liashkovich; Wali Hafezi; Joachim Kuhn; Hans Oberleithner; Armin Kramer; Victor Shahin

Evidence is emerging that changes in the structural and mechanical properties of viral particles are closely linked and that such changes are essential to infectivity. Here, applying the nanostructural and nanomechanical approach of atomic force microscopy, we visualised capsids of the ubiquitous human pathogen herpes simplex virus type 1 (HSV-1) at nano-scale resolution in physiologically relevant conditions. Simultaneously performed nano-indentation measurements on genome-containing and genome-free capsids revealed that genome-containing HSV-1 capsids withstand an exceptionally large mechanical force of ∼6 nN, which is three times larger than the highest values previously reported for other viruses. Greater mechanical forces, however, led to a release of the viral genome. The resulting genome-free capsids, which largely retained their overall structure, were found to be utterly elastic. HSV-1 capsids thus exhibit an exceptional structural and mechanical stability, which is largely provided by the densely packaged genome. This stability might be the key determinant for capsid survival over long distances in the axonal cytoplasm where it is exposed to mechanical forces by molecular motors before it reaches the nuclear pore for crucial genome uncoating.


Journal of Molecular Recognition | 2011

Nuclear delivery mechanism of herpes simplex virus type 1 genome

Ivan Liashkovich; Wali Hafezi; Joachim M Kühn; Hans Oberleithner; Victor Shahin

Herpes simplex virus type 1 (HSV‐1) is a widespread human pathogen infecting more than 80% of the population worldwide. Its replication involves an essential, poorly understood multistep process, referred to as uncoating. Uncoating steps are as follows: (1) The incoming capsid pinpoints the nuclear pore complex (NPC). (2) It opens up at the NPC and releases the highly pressurized viral genome. (3) The viral genome translocates through the NPC. In the present review, we highlight recent advances in this field and propose mechanisms underlying the individual steps of uncoating. We presume that the incoming HSV‐1 capsid pinpoints the NPC by hydrophobic interactions and opens up upon binding to NPC proteins. Genome translocation is initially pressure‐driven. Copyright


Journal of Ethnopharmacology | 2011

Proanthocyanidin-enriched extract from Myrothamnus flabellifolia Welw. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration.

Kirsten Gescher; Joachim Kuhn; Eva U. Lorentzen; Wali Hafezi; Andrea Derksen; Alexandra Deters; Andreas Hensel

AIM OF THE STUDY Extracts from the aerial parts of the South African resurrection plant Myrothamnus flabellifolia Welw. have been used traditionally against infections of the upper respiratory tract and skin diseases. A polyphenol-enriched extract was investigated for potential antiviral effects against herpes simplex virus type 1 (HSV-1) and adenovirus, and the underlying mode of action was to be studied. MATERIALS AND METHODS Antiviral effects of an acetone-water extract (MF) from Myrothamnus flabellifolia on HSV-1 and adenovirus type 3 were tested in infected Vero cells by plaque reduction assay, MTT test and immunofluorescence. The influence of the extract on the HSV-1 envelope glycoprotein D was shown by Western blot. Organotypic full thickness skin models consisting of multilayer skin equivalents were used for the investigation of MF effects on HSV-1 replication. RESULTS MF exhibited strong antiviral activity against HSV-1. The HSV-1-specific inhibitory concentration (IC(50)) was determined as 0.4 μg/mL and the cytotoxic concentration (CC(50)) against Vero cells as 50 μg/mL. A selectivity index (SI) (ratio of CC(50) to IC(50)) of approximately 120 was calculated when MF was added to the virus inoculum for 1h at 37°C prior to infection. The replication of adenovirus 3 was not affected by MF. MF abolished virus entry into the host cell by blocking viral attachment to the cell surface. When added after attachment at a concentration of >6 μg/mL, the extract also inhibited penetration of HSV-1 into the host cell. Polyphenolic compounds from MF directly interacted with viral particles, leading to the oligomerisation of envelope proteins as demonstrated for the essential viral glycoprotein D (gD). Using organotypic full thickness tissue cultures, it was shown that treatment of HSV-1 infected cultures with the MF resulted in reduced viral spread. CONCLUSIONS A polyphenol-enriched extract from Myrothamnus flabellifolia strongly acts against HSV-1 by blocking viral entry into the cells.


Fitoterapia | 2011

Inhibition of viral adsorption and penetration by an aqueous extract from Rhododendron ferrugineum L. as antiviral principle against herpes simplex virus type-1

Kirsten Gescher; Joachim Kuhn; Wali Hafezi; Andreas Louis; Andrea Derksen; Alexandra Deters; Eva U. Lorentzen; Andreas Hensel

The polyphenol-enriched aqueous extract RF from the aerial parts of Rhododendron ferrugineum exhibited strong antiviral activity against herpes simplex virus type-1 while adenovirus 3 was not affected. RF exhibited an IC(50) of 7.4 μg/mL and a selectivity index of 64 when added to the virus inoculum prior to infection. RF abolished virus entry into the host cell by blocking attachment to the cell surface. When added after attachment at a concentration of >25 μg/mL, RF inhibited also penetration of HSV-1 into the host cell. RF directly interacts with viral envelope proteins as demonstrated for the viral glycoprotein gD.


Journal of Clinical Microbiology | 2002

Evaluation of confirmatory strategies for detection of type-specific antibodies against herpes simplex virus type 2.

Bodo R. Eing; Lars Lippelt; Eva U. Lorentzen; Wali Hafezi; Wolfgang Schlumberger; Katja Steinhagen; Joachim Kuhn

ABSTRACT In this study, the optimal combination of three commercial glycoprotein G-2 (gG-2)-based herpes simplex virus type 2 (HSV-2) type-specific enzyme-linked immunosorbent assays (Euroimmun anti-HSV-2 immunoglobulin G [IgG] ELISA [Eu2], Gull HSV-2-specific IgG ELISA [Gu2], and Radim HSV-2 IgG ELISA [Ra2]) and one gG-2-based HSV-2-specific immunoblot (Euroimmun anti-HSV-1/HSV-2 gG Western blot [EuW]) was determined with regard to diagnostic performance and cost efficiency. Two hundred fifty serum samples were included in this study, 194 of which were from female prostitutes. When a formal primary “gold standard” was defined based on majority agreement of the commercial tests, with EuW being decisive in stand-off situations, the sensitivity and specificity of the assays in the samples from prostitutes were as follows: Eu2, 100 and 89.22%; Gu2, 94.44 and 96.08%; Ra2, 61.18 and 95.10%; and EuW, 98.90 and 100%. The most cost-effective confirmatory strategy in the samples from prostitutes was screening with Eu2, retesting positive and equivocal samples with Gu2, and resolving the remaining discordant results with EuW (estimated additional costs per sample, 79.02%; sensitivity, 100%; positive predictive value, 96.81%). Applying a self-developed gG-2-independent assay to the discordant and concordant negative samples in the samples from prostitutes suggested that the primary gold standard may have missed six HSV-2-positive samples. In conclusion, confirmatory strategies based on commercial gG-2-dependent seroassays result in an increase in the specificity of HSV-2-specific serology. However, further improvement of the sensitivity of current HSV-2-specific serology may require the additional exploitation of the gG-2-independent type-specific antibody response.

Collaboration


Dive into the Wali Hafezi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Hensel

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge