Wallace Y. Langdon
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wallace Y. Langdon.
Nature Reviews Molecular Cell Biology | 2001
Christine B.F. Thien; Wallace Y. Langdon
Responses to extracellular stimuli are often transduced from cell-surface receptors to protein tyrosine kinases which, when activated, initiate the formation of protein complexes that transmit signals throughout the cell. A prominent component of these complexes is the product of the proto-oncogene c-Cbl, which specifically targets activated protein tyrosine kinases and regulates their signalling. How, then, does this multidomain protein shape the responses generated by these signalling complexes?
Nature | 2002
Philippe Soubeyran; Katarzyna Kowanetz; Iwona Szymkiewicz; Wallace Y. Langdon; Ivan Dikic
Cbl is a multi-adaptor protein involved in ligand-induced downregulation of receptor tyrosine kinases. It is thought that Cbl-mediated ubiquitination of active receptors is essential for receptor degradation and cessation of receptor-induced signal transduction. Here we demonstrate that Cbl additionally regulates epidermal growth factor (EGF) receptor endocytosis. Cbl rapidly recruits CIN85 (Cbl-interacting protein of 85K; ref. 6) and endophilins (regulatory components of clathrin-coated vesicles) to form a complex with activated EGF receptors, thus controlling receptor internalization. CIN85 was constitutively associated with endophilins, whereas CIN85 binding to the distal carboxy terminus of Cbl was increased on EGF stimulation. Inhibition of these interactions was sufficient to block EGF receptor internalization, delay receptor degradation and enhance EGF-induced gene transcription, without perturbing Cbl-directed receptor ubiquitination. Thus, the evolutionary divergent C terminus of Cbl uses a mechanism that is functionally separable from the ubiquitin ligase activity of Cbl to mediate ligand-dependent downregulation of receptor tyrosine kinases.
Molecular and Cellular Biology | 1998
Maria A. Murphy; Ralf Schnall; Deon J. Venter; Louise Barnett; Ivan Bertoncello; Christine B.F. Thien; Wallace Y. Langdon; David Bowtell
ABSTRACT The c-Cbl protein is tyrosine phosphorylated and forms complexes with a wide range of signalling partners in response to various growth factors. How c-Cbl interacts with proteins, such as Grb2, phosphatidylinositol 3-kinase, and phosphorylated receptors, is well understood, but its role in these complexes is unclear. Recently, theCaenorhabditis elegans Cbl homolog, Sli-1, was shown to act as a negative regulator of epidermal growth factor receptor signalling. This finding forced a reassessment of the role of Cbl proteins and highlighted the desirability of testing genetically whether c-Cbl acts as a negative regulator of mammalian signalling. Here we investigate the role of c-Cbl in development and homeostasis in mice by targeted disruption of the c-Cbl locus. c-Cbl-deficient mice were viable, fertile, and outwardly normal in appearance. Bone development and remodelling also appeared normal in c-Cbl mutants, despite a previously reported requirement for c-Cbl in osteoclast function. However, consistent with a high level of expression of c-Cbl in the hemopoietic compartment, c-Cbl-deficient mice displayed marked changes in their hemopoietic profiles, including altered T-cell receptor expression, lymphoid hyperplasia, and primary splenic extramedullary hemopoiesis. The mammary fat pads of mutant female mice also showed increased ductal density and branching compared to those of their wild-type littermates, indicating an unanticipated role for c-Cbl in regulating mammary growth. Collectively, the hyperplastic histological changes seen in c-Cbl mutant mice are indicative of a normal role for c-Cbl in negatively regulating signalling events that control cell growth. Consistent with this view, we observed greatly increased intracellular protein tyrosine phosphorylation in thymocytes following CD3ε cross-linking. In particular, phosphorylation of ZAP-70 kinase in thymocytes was uncoupled from a requirement for CD4-mediated Lck activation. This study provides the first biochemical characterization of any organism that is deficient in a member of this unique protein family. Our findings demonstrate critical roles for c-Cbl in hemopoiesis and in controlling cellular proliferation and signalling by the Syk/ZAP-70 family of protein kinases.
Molecular Cell | 2001
Pascal Peschard; Tanya M Fournier; Louie Lamorte; Monica A. Naujokas; Hamid Band; Wallace Y. Langdon; Morag Park
The c-Cbl protooncogene is a negative regulator for several receptor tyrosine kinases (RTKs) through its ability to promote their polyubiquitination. Hence, uncoupling c-Cbl from RTKs may lead to their deregulation. In testing this, we show that c-Cbl promotes ubiquitination of the Met RTK. This requires the c-Cbl tyrosine kinase binding (TKB) domain and a juxtamembrane tyrosine residue on Met. This tyrosine provides a direct binding site for the c-Cbl TKB domain, and is absent in the rearranged oncogenic Tpr-Met variant. A Met receptor, where the juxtamembrane tyrosine is replaced by phenylalanine, is not ubiquitinated and has transforming activity in fibroblast and epithelial cells. We propose the uncoupling of c-Cbl from RTKs as a mechanism contributing to their oncogenic activation.
The EMBO Journal | 1994
Christopher E. Andoniou; Christine B.F. Thien; Wallace Y. Langdon
v‐cbl is the transforming gene of a murine retrovirus which induces pre‐B cell lymphomas and myelogenous leukaemias. It encodes 40 kDa of a gag fusion protein which is localized in the cytoplasm and nucleus of infected cells. The c‐cbl oncogene encodes a 120 kDa cytoplasmic protein and its overexpression is not associated with tumorigenesis. The c‐cbl sequence has shown that v‐cbl was generated by a truncation that removed 60% of the C‐terminus. In this study, we carried out experiments to identify the position within cbl where the transition occurs between non‐tumorigenic and tumorigenic forms. These experiments focused attention on a region of 17 amino acids which is deleted from cbl in the 70Z/3 pre‐B lymphoma due to a splice acceptor site mutation. This mutation activates cbls tumorigenic potential and induces its tyrosine phosphorylation. We also show that the expression of the v‐abl and bcr‐abl oncogenes results in the induction of cbl tyrosine phosphorylation, and that abl and cbl associate in vivo. These findings demonstrate that tyrosine‐phosphorylated cbl promotes tumorigenesis and that cbl is a downstream target of the bcr‐abl and v‐abl kinases.
The EMBO Journal | 2002
Esther Sook Miin Wong; Chee Wai Fong; Jormay Lim; Permeen Yusoff; Boon Chuan Low; Wallace Y. Langdon; Graeme R. Guy
Drosophila Sprouty (dSpry) was genetically identified as a novel antagonist of fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR) and Sevenless signalling, ostensibly by eliciting its response on the Ras/MAPK pathway. Four mammalian sprouty genes have been cloned, which appear to play an inhibitory role mainly in FGF‐ mediated lung and limb morphogenesis. Evidence is presented herein that describes the functional implications of the direct association between human Sprouty2 (hSpry2) and c‐Cbl, and its impact on the cellular localization and signalling capacity of EGFR. Contrary to the consensus view that Spry2 is a general inhibitor of receptor tyrosine kinase signalling, hSpry2 was shown to abrogate EGFR ubiquitylation and endocytosis, and sustain EGF‐induced ERK signalling that culminates in differentiation of PC12 cells. Correlative evidence showed the failure of hSpry2ΔN11 and mSpry4, both deficient in c‐Cbl binding, to instigate these effects. hSpry2 interacts specifically with the c‐Cbl RING finger domain and displaces UbcH7 from its binding site on the E3 ligase. We conclude that hSpry2 potentiates EGFR signalling by specifically intercepting c‐Cbl‐mediated effects on receptor down‐regulation.
Biochemical Journal | 2005
Christine B.F. Thien; Wallace Y. Langdon
The activation of signalling pathways by ligand engagement with transmembrane receptors is responsible for determining many aspects of cellular function and fate. While these outcomes are initially determined by the nature of the ligand and its receptor, it is also essential that intracellular enzymes, adaptor proteins and transcription factors are correctly assembled to convey the intended response. In recent years, it has become evident that proteins that regulate the amplitude and duration of these signalling responses are also critical in determining the function and fate of cells. Of these, the Cbl family of E3 ubiquitin ligases and adaptor proteins has emerged as key negative regulators of signals from many types of cell-surface receptors. The array of receptors and downstream signalling proteins that are regulated by Cbl proteins is diverse; however, in most cases, the receptors have a common link in that they either possess a tyrosine kinase domain or they form associations with cytoplasmic PTKs (protein tyrosine kinases). Thus Cbl proteins become involved in signalling responses at a time when PTKs are first activated and therefore provide an initial line of defence to ensure that signalling responses proceed at the desired intensity and duration.
Molecular Cell | 2001
Christine B.F. Thien; Francesca Walker; Wallace Y. Langdon
The c-Cbl protooncogene can function as a negative regulator of receptor protein tyrosine kinases (RPTKs) by targeting activated receptors for polyubiquitination and downregulation. This function requires its tyrosine kinase binding (TKB) domain for targeting RPTKs and RING finger domain to recruit E2 ubiquitin-conjugating enzymes. It has therefore been proposed that oncogenic Cbl proteins act in a dominant-negative manner to block this c-Cbl activity. In testing this hypothesis, we found that although mutations spanning the RING finger abolish c-Cbl-directed polyubiquitination and downregulation of RPTKs, they do not induce transformation. In contrast, it is mutations within a highly conserved alpha-helical structure linking the SH2 and RING finger domains that render Cbl proteins oncogenic. Thus, Cbl transformation involves effects additional to polyubiquitination of RPTKs that are independent of the RING finger and its ability to recruit E2-conjugating enzymes.
Nature | 2014
Magdalena Paolino; Axel Choidas; Stephanie Wallner; Blanka Pranjic; Iris Uribesalgo; Stefanie Loeser; Amanda M. Jamieson; Wallace Y. Langdon; Fumiyo Ikeda; Juan Pablo Fededa; Shane J. Cronin; Roberto Nitsch; Carsten Schultz-Fademrecht; Jan Eickhoff; Sascha Menninger; Anke Unger; Robert Torka; Thomas Gruber; Reinhard Hinterleitner; Gottfried Baier; Dominik Wolf; Axel Ullrich; Bert Klebl; Josef M. Penninger
Tumour metastasis is the primary cause of mortality in cancer patients and remains the key challenge for cancer therapy. New therapeutic approaches to block inhibitory pathways of the immune system have renewed hopes for the utility of such therapies. Here we show that genetic deletion of the E3 ubiquitin ligase Cbl-b (casitas B-lineage lymphoma-b) or targeted inactivation of its E3 ligase activity licenses natural killer (NK) cells to spontaneously reject metastatic tumours. The TAM tyrosine kinase receptors Tyro3, Axl and Mer (also known as Mertk) were identified as ubiquitylation substrates for Cbl-b. Treatment of wild-type NK cells with a newly developed small molecule TAM kinase inhibitor conferred therapeutic potential, efficiently enhancing anti-metastatic NK cell activity in vivo. Oral or intraperitoneal administration using this TAM inhibitor markedly reduced murine mammary cancer and melanoma metastases dependent on NK cells. We further report that the anticoagulant warfarin exerts anti-metastatic activity in mice via Cbl-b/TAM receptors in NK cells, providing a molecular explanation for a 50-year-old puzzle in cancer biology. This novel TAM/Cbl-b inhibitory pathway shows that it might be possible to develop a ‘pill’ that awakens the innate immune system to kill cancer metastases.
Molecular and Cellular Biology | 2000
Christopher E. Andoniou; Nancy L. Lill; Christine B.F. Thien; Mark L. Lupher; Satoshi Ota; D. D. L. Bowtell; R. M. Scaife; Wallace Y. Langdon
ABSTRACT Fyn is a prototype Src-family tyrosine kinase that plays specific roles in neural development, keratinocyte differentiation, and lymphocyte activation, as well as roles redundant with other Src-family kinases. Similar to other Src-family kinases, efficient regulation of Fyn is achieved through intramolecular binding of its SH3 and SH2 domains to conserved regulatory regions. We have investigated the possibility that the tyrosine kinase regulatory protein Cbl provides a complementary mechanism of Fyn regulation. We show that Cbl overexpression in 293T embryonic kidney and Jurkat T-lymphocyte cells led to a dramatic reduction in the active pool of Fyn; this was seen as a reduction in Fyn autophosphorylation, reduced phosphorylation of in vivo substrates, and inhibition of transcription from a Src-family kinase response element linked to a luciferase reporter. Importantly, a Fyn mutant (FynY528F) relieved of intramolecular repression was still negatively regulated by Cbl. The Cbl-dependent negative regulation of Fyn did not appear to be mediated by inhibition of Fyn kinase activity but was correlated with enhanced protein turnover. Consistent with such a mechanism, elevated levels of Fyn protein were observed in cell lines derived from Cbl−/− mice compared to those in wild-type controls. The effects of Cbl on Fyn were not observed when the 70ZCbl mutant protein was analyzed. Taken together, these observations implicate Cbl as a component in the negative regulation of Fyn and potentially other Src-family kinases, especially following kinase activation. These results also suggest that protein degradation may be a general mechanism for Cbl-mediated negative regulation of activated tyrosine kinases.