Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter B. Wilson is active.

Publication


Featured researches published by Walter B. Wilson.


Journal of Chromatography A | 2016

Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography.

Walter B. Wilson; Lane C. Sander; Miren Lopez de Alda; Milton L. Lee; Stephen A. Wise

Retention indices for 79 alkyl-substituted polycyclic aromatic sulfur heterocycles (PASHs) were determined by using reversed-phase liquid chromatography (LC) on a monomeric and polymeric octadecylsilane (C18) stationary phase. Molecular shape parameters [length, breadth, thickness (T), and length-to-breadth ratio (L/B)] were calculated for all the compounds studied. Based on separations of isomeric methylated polycyclic aromatic hydrocarbons on polymeric C18 phases, alkyl-substituted PASHs are expected to elute based on increasing L/B ratios. However, the correlation coefficients had a wide range of values from r=0.43 to r=0.93. Several structural features besides L/B ratios were identified to play an important role in the separation mechanism of PASHs on polymeric C18 phases. First, the location of the sulfur atom in a bay-like-region results in alkylated-PASHs being more retentive than non-bay-like-region alkylated-PASHs, and they elute later than expected based on L/B value. Second, the placement of the alkyl group in the k region of the structure resulted in a later elution than predicted by L/B. Third, highly nonplanar methyl-PASHs (i.e., 1-Me and 11-MeBbN12T) elute prior to the parent PASH (BbN12T).


Journal of Chromatography A | 2016

Retention behavior of isomeric polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography.

Walter B. Wilson; Lane C. Sander; Miren Lopez de Alda; Milton L. Lee; Stephen A. Wise

Retention indices for 70 polycyclic aromatic sulfur heterocycles (PASHs) were determined using reversed-phase liquid chromatography (LC) on a monomeric and a polymeric C18 stationary phase. Molecular shape parameters [length, breadth, thickness (T), and length-to-breadth ratio (L/B)] were calculated for all the compounds studied. Correlations between the retention on the polymeric C18 phase and PASH geometry (L/B and T) were investigated for six specific PASH isomer groups with molecular mass (MM) 184Da, 234Da, 258Da, 284Da, 334Da, and 384Da. Similar to previous studies for polycyclic aromatic hydrocarbons (PAHs), PASH elution order on the polymeric C18 phase was generally found to follow increasing L/B values. Correlation coefficients for retention vs L/B ranged from r=0.45 (MM 184Da) to r=0.89 (MM 284Da). In the case of smaller PASHs (MM≤258Da), the location of the sulfur atom in the bay-region of the structure resulted in later than expected elution of these isomers based on L/B. In the case of the larger PASHs (MM≥284Da), nonplanarity had a significant influence on earlier than predicted elution based on L/B values.


Journal of Chromatography A | 2017

Retention behavior of isomeric polycyclic aromatic sulfur heterocycles in gas chromatography on stationary phases of different selectivity

Walter B. Wilson; Lane C. Sander; Jorge O. Oña-Ruales; Stephanie G. Mössner; Leonard M. Sidisky; Milton L. Lee; Stephen A. Wise

Retention indices for 48 polycyclic aromatic sulfur heterocycles (PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry (L/B and T, i.e., length-to-breadth ratio and thickness, respectively) were investigated for the following four isomer sets: (1) 4 three-ring molecular mass (MM) 184Da PASHs, (2) 13 four-ring MM 234Da PASHs, (3) 10 five-ring MM 258Da PASHs, and (4) 20 five-ring MM 284Da PASHs. Correlation coefficients for retention on the 50% LC-DMPS vs L/B ranged from r=0.50 (MM 284Da) to r=0.77 (MM 234Da). Correlation coefficients for retention on the IL phase vs L/B ranged from r=0.31 (MM 234Da) to r=0.54 (MM 284Da). Correlation coefficients for retention on the 50% phenyl vs L/B ranged from r=0.14 (MM 258Da) to r=0.59 (MM 284Da). Several correlation trends are discussed in detail for the retention behavior of PASH on the three stationary phases.


Analytical and Bioanalytical Chemistry | 2017

Qualitative characterization of SRM 1597a coal tar for polycyclic aromatic hydrocarbons and methyl-substituted derivatives via normal-phase liquid chromatography and gas chromatography/mass spectrometry

Walter B. Wilson; Hugh V. Hayes; Lane C. Sander; Andres D. Campiglia; Stephen A. Wise

AbstractA normal-phase liquid chromatography (NPLC) fractionation procedure was developed for the characterization of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from a coal tar sample (Standard Reference Material (SRM) 1597a). Using a semi-preparative aminopropyl (NH2) LC column, the coal tar sample was separated using NPLC based on the number of aromatic carbons; a total of 14 NPLC fractions were collected. SRM 1597a was analyzed before and after NPLC fractionation by using gas chromatography/mass spectrometry (GC/MS) with a 50% phenyl stationary phase. The NPLC-GC/MS method presented in this study allowed for the identification of 72 PAHs and 56 MePAHs. These identifications were based on the NPLC retention times for authentic reference standards, GC retention times for authentic reference standards, and the predominant molecular ion peak in the mass spectrum. Most noteworthy was the determination of dibenzo[a,l]pyrene, which could not be measured directly by GC/MS because of low concentration and co-elution with dibenzo[j,l]fluoranthene. The NPLC-GC/MS procedure also allowed for the tentative identification of 74 PAHs and 117 MePAHs based on the molecular ion peak only. This study represents the most comprehensive qualitative characterization of SRM 1597a to date. Graphical abstractNPLC-GC/MS analysis for the six-ring MM 302 Da PAH isomers in SRM 1597a


Journal of Chromatography A | 2017

Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycle isomers in gas chromatography on stationary phases of different selectivity.

Walter B. Wilson; Lane C. Sander; Jorge O. Oña-Ruales; Stephanie G. Mössner; Leonard M. Sidisky; Milton L. Lee; Stephen A. Wise

Retention indices for 10 sets of alkyl-substituted polycyclic aromatic sulfur heterocycles (PASHs) isomers (total of 80 PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry [length-to-breadth (L/B) and thickness (T)] were investigated for the following PASHs: 4 methyl-substituted dibenzothiophenes (DBTs), 3 ethyl-substituted DBTs, 15 dimethyl-substituted DBTs, 8 trimethyl-substituted DBTs, 15 methyl-substituted naphthothiophenes, 30 methyl-substituted benzonaphthothiophenes, and 5 methyl-substituted tetrapheno[1,12-bcd]thiophene. Correlation coefficients for retention on the 50% phenyl phase vs L/B ranged from r=-0.28 (MeBbN23Ts) to r=0.92 (EtDBTs). Correlation coefficients for retention on the IL phase vs L/B ranged from r=0.13 (MeN12Ts) to r=0.83 (EtDBTs). Correlation coefficients for retention on the 50% LC-DMPS phase vs L/B ranged from r=0.22 (MeDBTs) to r=0.84 (TriMeDBTs).


Analytical and Bioanalytical Chemistry | 2017

Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbon and their methyl-substituted derivatives on an aminopropyl stationary phase

Walter B. Wilson; Hugh V. Hayes; Lane C. Sander; Andres D. Campiglia; Stephen A. Wise

AbstractRetention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH2) stationary phase. PAH retention behavior on the NH2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = −0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstractNPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.


Molecular Physics | 2016

The influence of the aromatic character in the gas chromatography elution order: the case of polycyclic aromatic hydrocarbons

Jorge O. Oña-Ruales; Walter B. Wilson; Federica Nalin; Lane C. Sander; Patricia Schubert-Ullrich; Stephen A. Wise

ABSTRACT A link between the aromatic character of polycyclic aromatic hydrocarbons (PAHs) and gas chromatography (GC) elution order in columns with a polysiloxane backbone in the stationary phase is reported for the first time. The aromatic character was calculated using a method that combines the π-Sextet Rule and the Pauling Ring Bond Orders to allow the establishment of the location and migration of aromatic sextets in PAH structures. One GC column with a polysiloxane-like backbone (Rxi-PAH) and three GC columns with a polysiloxane backbone (DB-5, SE-52 and LC-50) were used for the analysis. According to the results of this study, within an isomer group, PAHs that contain a lower number of rings affected by the aromatic sextets tend to elute earlier than PAHs that contain a higher number of rings affected by the aromatic sextets. The PAHs that follow the calculated elution order are 88% in the Rxi-PAH column, 88% in the DB-5 column, 93% in the SE-52 column and 85% in the LC-50 column. It is expected that future analyses with other aromatic compounds in GC columns with a polysiloxane backbone in the stationary phase will follow a GC elution order that agrees with the aromatic character of the molecules.


Analytical and Bioanalytical Chemistry | 2018

Qualitative characterization of three combustion-related standard reference materials for polycyclic aromatic sulfur heterocycles and their alkyl-substituted derivatives via normal-phase liquid chromatography and gas chromatography/mass spectrometry

Walter B. Wilson; Hugh V. Hayes; Andres D. Campiglia; Stephen A. Wise

AbstractThe research described here provides the most comprehensive qualitative characterization of three combustion-related standard reference materials (SRMs) for polycyclic aromatic sulfur heterocycles (PASHs) and some alkyl-substituted (alkyl-) derivatives to date: SRM 1597a (coal tar), SRM 1991 (coal tar/petroleum extract), and SRM 1975 (diesel particulate extract). An analytical approach based on gas chromatography/mass spectrometry (GC/MS) is presented for the determination of three-, four-, and five-ring PASH isomers and three- and four-ring alkyl-PASHs in the three SRM samples. The benefit of using a normal-phase liquid chromatography (NPLC) fractionation procedure prior to GC/MS analysis was demonstrated for multiple isomeric PASH groups. Using a semi-preparative aminopropyl (NH2) LC column, the three combustion-related samples were fractionated based on the number of aromatic carbon atoms. The NPLC-GC/MS method presented here allowed for the following identification breakdown: SRM 1597a – 35 PASHs and 59 alkyl-PASHs; SRM 1991–31 PASHs and 58 alkyl-PASHs; and SRM 1975–13 PASHs and 25 alkyl-PASHs. These identifications were based on NPLC retention data, the GC retention times of reference standards, and the predominant molecular ion peak in the mass spectrum. Prior to this study, only 11, 1, and 0 PASHs/alkyl-PASHs had been identified in SRM 1597a, SRM 1991, and SRM 1975, respectively. Graphical abstractNPLC-GC/MS analysis for the three- and four-ring parent PASH isomers in SRM 1597a.


Analytical Methods | 2018

Determination of polycyclic aromatic hydrocarbons with molecular mass 302 in standard reference material 1597a by reversed-phase liquid chromatography and stop-flow fluorescence detection

Hugh V. Hayes; Walter B. Wilson; Lane C. Sander; Stephen A. Wise; Andres D. Campiglia

The identification of isomeric polycyclic aromatic hydrocarbons (PAHs) in complex samples via reversed-phase liquid chromatography (RPLC) with fluorescence detection (FL) is normally based on matching the chromatographic retention times of suspected peaks of interest with reference standards. Since no spectral information is obtained during the chromatographic run, the accurate identification of co-eluting PAHs with similar chromatographic behaviors requires confirmation with additional chromatographic methods. This is particularly true for the analysis of PAH isomers with the relative molecular mass (MM, g/mol) 302. The work presented here explores the information content of room-temperature fluorescence spectra for the analysis of PAHs with MM 302 in the Standard Reference Material (SRM) 1597a. Fluorescence spectra were recorded under stop-flow conditions with the aid of a commercial HPLC system. Of the 21 MM 302 PAHs known to be present in the SRM 1597a, 20 were tentatively identified based on retention times and the presence of 18 was confirmed based on excitation and emission spectral profiles.


Journal of Chromatography A | 2018

Method development for the certification of a ginsenoside calibration solution via liquid chromatography with absorbance and mass spectrometric detection

Walter B. Wilson; Lane C. Sander

The research presented here describes the development of two analytical methods for use in the certification of a ginsenoside calibration solution Standard Reference Material (SRM) 3389 consisting of seven ginsenosides: Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd. The new methods utilized the liquid chromatographic (LC) separation of ginsenoside mixtures with absorbance detection (UV) and mass spectrometry (MS). Ginsenosides Rb3, Rg2, Rg3, Rh1, and Rh2 were evaluated for use as internal standards for LC/MS measurements. The 12 ginsenosides were baseline resolved by gradient elution LC/UV, with an initial mobile phase composition of 22% acetonitrile and 78% water, flow rate of 0.7 mL/min, and column temperature of 25 °C. The work presented here includes a detailed investigation into the optimization of the chromatographic conditions to minimize measurement biases that result from unresolved constituents. Temperature and mobile phase composition are known to play a significant role in column selectivity; however, flow rate is expected to influence primarily the separation efficiency and detection sensitivity. In the current study, column selectivity changed with changes in flow rate and the relative retention of ginsenoside Rg2 and Rh1 changed as the flow rate increased from 0.6 mL/min to 1.0 mL/min.

Collaboration


Dive into the Walter B. Wilson's collaboration.

Top Co-Authors

Avatar

Stephen A. Wise

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Lane C. Sander

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Andres D. Campiglia

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Hugh V. Hayes

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Jorge O. Oña-Ruales

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Milton L. Lee

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Federica Nalin

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Miren Lopez de Alda

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Stephanie G. Mössner

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge