Walter Boscheri
University of Trento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter Boscheri.
Journal of Computational Physics | 2014
Walter Boscheri; Michael Dumbser
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.
Journal of Computational Physics | 2014
Walter Boscheri; Dinshaw S. Balsara; Michael Dumbser
Abstract In this paper we use the genuinely multidimensional HLL Riemann solvers recently developed by Balsara et al. in [13] to construct a new class of computationally efficient high order Lagrangian ADER-WENO one-step ALE finite volume schemes on unstructured triangular meshes. A nonlinear WENO reconstruction operator allows the algorithm to achieve high order of accuracy in space, while high order of accuracy in time is obtained by the use of an ADER time-stepping technique based on a local space–time Galerkin predictor. The multidimensional HLL and HLLC Riemann solvers operate at each vertex of the grid, considering the entire Voronoi neighborhood of each node and allow for larger time steps than conventional one-dimensional Riemann solvers. The results produced by the multidimensional Riemann solver are then used twice in our one-step ALE algorithm: first, as a node solver that assigns a unique velocity vector to each vertex, in order to preserve the continuity of the computational mesh; second, as a building block for genuinely multidimensional numerical flux evaluation that allows the scheme to run with larger time steps compared to conventional finite volume schemes that use classical one-dimensional Riemann solvers in normal direction. The space–time flux integral computation is carried out at the boundaries of each triangular space–time control volume using the Simpson quadrature rule in space and Gauss–Legendre quadrature in time. A rezoning step may be necessary in order to overcome element overlapping or crossing-over. Since our one-step ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, the remapping stage is not needed, making our algorithm a so-called direct ALE method. We apply the method presented in this article to two systems of hyperbolic conservation laws, namely the Euler equations of compressible gas dynamics and the equations of ideal classical magneto-hydrodynamics (MHD). Convergence studies up to fourth order of accuracy in space and time have been carried out. Several numerical test problems have been solved to validate the new approach. Furthermore, the new high order Lagrangian schemes based on genuinely multidimensional Riemann solvers have been carefully compared with high order Lagrangian finite volume schemes based on conventional one-dimensional Riemann solvers. It has been clearly shown that due to the less restrictive CFL condition the new schemes based on multidimensional HLL and HLLC Riemann solvers are computationally more efficient than the ones based on a conventional one-dimensional Riemann solver technique.
arXiv: Computational Physics | 2013
Walter Boscheri; Michael Dumbser; Dinshaw S. Balsara
SUMMARY In this paper, we present a class of high-order accurate cell-centered arbitrary Lagrangian–Eulerian (ALE) one-step ADER weighted essentially non-oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two-dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element-local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one-dimensional half-Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high-order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright
Communications in Computational Physics | 2013
Walter Boscheri; Michael Dumbser
In this article we present a new class of high order accurate Arbitrary-Eulerian-Lagrangian (ALE) one-step WENO finite volume schemes for solving nonlinear hyperbolic systems of conservation laws on moving two dimensional unstructured triangular meshes. A WENO reconstruction algorithm is used to achieve high order accuracy in space and a high order one-step time discretization is achieved by using the local space-time Galerkin predictor proposed in. For that purpose, a new element-local weak formulation of the governing PDE is adopted on moving space-time elements. The space-time basis and test functions are obtained considering Lagrange interpolation polynomials passing through a predefined set of nodes. Moreover, a polynomial mapping defined by the same local space-time basis functions as the weak solution of the PDE is used to map the moving physical space-time element onto a space-time reference element. To maintain algorithmic simplicity, the final ALE one-step finite volume scheme uses moving triangular meshes with straight edges. This is possible in the ALE framework, which allows a local mesh velocity that is different from the local fluid velocity. We present numerical convergence rates for the schemes presented in this paper up to sixth order of accuracy in space and time and show some classical numerical test problems for the two-dimensional Euler equations of compressible gas dynamics.
International Journal for Numerical Methods in Fluids | 2014
Walter Boscheri; Michael Dumbser; Dinshaw S. Balsara
SUMMARY In this paper, we present a class of high-order accurate cell-centered arbitrary Lagrangian–Eulerian (ALE) one-step ADER weighted essentially non-oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two-dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element-local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one-dimensional half-Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high-order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright
Journal of Computational Physics | 2015
Walter Boscheri; Raphaël Loubère; Michael Dumbser
In this paper we present a new family of efficient high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-MOOD finite volume schemes for the solution of nonlinear hyperbolic systems of conservation laws for moving unstructured triangular and tetrahedral meshes. This family is the next generation of the ALE ADER-WENO schemes presented in 16,20]. Here, we use again an element-local space-time Galerkin finite element predictor method to achieve a high order accurate one-step time discretization, while the somewhat expensive WENO approach on moving meshes, used to obtain high order of accuracy in space, is replaced by an a posteriori MOOD loop which is shown to be less expensive but still as accurate. This a posteriori MOOD loop ensures the numerical solution in each cell at any discrete time level to fulfill a set of user-defined detection criteria. If a cell average does not satisfy the detection criteria, then the solution is locally re-computed by progressively decrementing the order of the polynomial reconstruction, following a so-called cascade of predefined schemes with decreasing approximation order. A so-called parachute scheme, typically a very robust first order Godunov-type finite volume method, is employed as a last resort for highly problematic cells. The cascade of schemes defines how the decrementing process is carried out, i.e. how many schemes are tried and which orders are adopted for the polynomial reconstructions. The cascade and the parachute scheme are choices of the user or the code developer. Consequently the iterative MOOD loop allows the numerical solution to maintain some interesting properties such as positivity, mesh validity, etc., which are otherwise difficult to ensure. We have applied our new high order unstructured direct ALE ADER-MOOD schemes to the multi-dimensional Euler equations of compressible gas dynamics. A large set of test problems has been simulated and analyzed to assess the validity of our approach in terms of both accuracy and efficiency (CPU time and memory consumption).
Journal of Computational Physics | 2015
Walter Boscheri; Michael Dumbser; Olindo Zanotti
We present a novel cell-centered direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume scheme on unstructured triangular meshes that is high order accurate in space and time and that also allows for time-accurate local time stepping (LTS). It extends our previous investigations on high order Lagrangian finite volume schemes with LTS carried out in 46] in one space dimension. The new scheme uses the following basic ingredients: a high order WENO reconstruction in space on unstructured meshes, an element-local high-order accurate space-time Galerkin predictor that performs the time evolution of the reconstructed polynomials within each element, the computation of numerical ALE fluxes at the moving element interfaces through approximate Riemann solvers, and a one-step finite volume scheme for the time update which is directly based on the integral form of the conservation equations in space-time. The inclusion of the LTS algorithm requires a number of crucial extensions, such as a proper scheduling criterion for the time update of each element and for each node; a virtual projection of the elements contained in the reconstruction stencils of the element that has to perform the WENO reconstruction; and the proper computation of the fluxes through the space-time boundary surfaces that will inevitably contain hanging nodes in time due to the LTS algorithm.We have validated our new unstructured Lagrangian LTS approach over a wide sample of test cases solving the Euler equations of compressible gas dynamics in two space dimensions, including shock tube problems, cylindrical explosion problems, as well as specific tests typically adopted in Lagrangian calculations, such as the Kidder, the Saltzman and the Sedov problem. When compared to the traditional global time stepping (GTS) method, the newly proposed LTS algorithm allows to reduce the number of element updates in a given simulation by a factor that may depend on the complexity of the dynamics, but which can be as large as ~4.7. Finally, we have also shown the improvement in terms of computational efficiency in a representative test for the special relativistic magnetohydrodynamics (RMHD) equations.
Journal of Computational Physics | 2017
Walter Boscheri; Michael Dumbser
Abstract We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space–time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time t n with the new one at time t n + 1 provides the space–time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian–Eulerian (ALE) schemes, where a space–time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier–Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).
Journal of Scientific Computing | 2016
Walter Boscheri; Michael Dumbser
In this paper we present a new and efficient quadrature-free formulation for the family of cell-centered high order accurate direct arbitrary-Lagrangian–Eulerian one-step ADER-WENO finite volume schemes on unstructured triangular and tetrahedral meshes that has been developed by the authors in a recent series of papers (Boscheri et al. in J Comput Phys 267:112–138, 2014; Boscheri and Dumbser in Commun Comput Phys 14:1174–1206, 2013; Boscheri and Dumbser in J Comput Phys 275:484–523, 2014; Dumbser and Boscheri in Comput Fluids 86:405–432, 2013). High order of accuracy in time is obtained by using a local space–time Galerkin predictor on moving curved meshes, while a high order accurate nonlinear WENO method is adopted to produce high order essentially non-oscillatory reconstruction polynomials in space. The mesh is moved at each time step according to the solution of a node solver algorithm that assigns a unique velocity vector to each node of the mesh. A rezoning procedure can also be applied when mesh distortions and deformations become too severe. The space–time mesh is then constructed by straight edges connecting the vertex positions at the old time level
SIAM Journal on Scientific Computing | 2017
Michael Dumbser; Walter Boscheri; Matteo Semplice; Giovanni Russo