Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter Chitarra is active.

Publication


Featured researches published by Walter Chitarra.


Planta | 2012

Recovery from water stress affects grape leaf petiole transcriptome

Irene Perrone; Chiara Pagliarani; Claudio Lovisolo; Walter Chitarra; Federica Roman; Andrea Schubert

Fast and efficient recovery from water stress is a key determinant of plant adaptation to changing meteorological conditions modulating transpiration, i.e. air temperature and humidity. We analysed transcriptomic responses during rehydration after water stress in grapevine leaf petioles, where embolism formation and repair commonly take place, and where metabolic changes related to embolism recovery are expected to be particularly important. We compared gene expression of recovering plants with irrigated controls, upon high and low transpiration conditions, using cDNA microarrays. In parallel, we assessed the daily dynamics of water relations, embolism formation and repair, and leaf abscisic acid concentration. In recovering plants, the most affected gene categories were secondary metabolism, including genes linked to flavonoid biosynthesis; sugar metabolism and transport, and several aquaporin genes. The physiological dynamics of recovery were lower and the number of differentially expressed probes was much lower upon low transpiration than found in actively transpiring grapevines, suggesting the existence of a more intense metabolic reorganization upon high transpiration conditions and of a signal eliciting these responses. In plants recovering under high transpiration, abscisic acid concentrations significantly increased, and, in parallel, transcripts linked to abscisic acid metabolism and signalling (ABA-8′-hydroxylase, serine-threonine kinases, RD22 proteins) were upregulated; a trend that was not observed upon low transpiration. Our results show that recovery from water stress elicits complex transcriptomic responses in grapevine. The increase observed in abscisic acid cellular levels could represent a signal triggering the activation of responses to rehydration after stress.


Plant Physiology | 2012

The Grapevine Root-Specific Aquaporin VvPIP2;4N Controls Root Hydraulic Conductance and Leaf Gas Exchange under Well-Watered Conditions But Not under Water Stress

Irene Perrone; Giorgio Gambino; Walter Chitarra; Marco Vitali; Chiara Pagliarani; Nadia Riccomagno; Raffaella Balestrini; Ralf Kaldenhoff; Norbert Uehlein; Ivana Gribaudo; Andrea Schubert; Claudio Lovisolo

We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape ‘Brachetto’, and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.


Transgenic Research | 2010

Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation

Giorgio Gambino; Irene Perrone; Andrea Carra; Walter Chitarra; Paolo Boccacci; Daniela Torello Marinoni; Marco Barberis; Fatemeh Maghuly; Margit Laimer; Ivana Gribaudo

Eight transgenic grapevine lines transformed with the coat protein gene of Grapevine fanleaf virus (GFLV-CP) were analyzed for a correlation between transgene expression, siRNAs production and DNA methylation. Bisulphite genome sequencing was used for a comprehensive analysis of DNA methylation. Methylated cytosine residues of CpG and CpNpG sites were detected in the GFLV-CP transgene, in the T7 terminator and in the 35S promoter of three grapevines without transgene expression, but no detectable level of siRNAs was recorded in these lines. The detailed analysis of 8 lines revealed the complex arrangements of T-DNA and integrated binary vector sequences as crucial factors that influence transgene expression. After inoculation with GFLV, no change in the levels of cytosine methylation was observed, but transgenic and untransformed plants produced short siRNAs (21–22 nt) indicating that the grapevine plants responded to GFLV infection by activating a post-transcriptional gene silencing mechanism.


Plant Physiology | 2016

Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress

Walter Chitarra; Chiara Pagliarani; Biancaelena Maserti; Erica Lumini; Ilenia Siciliano; Pasquale Cascone; Andrea Schubert; Giorgio Gambino; Raffaella Balestrini; Emilio Guerrieri

Arbuscular mycorrhizal symbiosis can improve tolerance to severe water stress conditions in tomato plants. Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS. To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved.


Planta | 2014

Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles

Walter Chitarra; Raffaella Balestrini; Marco Vitali; Chiara Pagliarani; Irene Perrone; Andrea Schubert; Claudio Lovisolo

In this work, the involvement of vessel-associated cells in embolism recovery was investigated by studying leaf petiole hydraulics and expression profiles of aquaporins and genes related to sugar metabolism. Two different stress treatments were imposed onto grapevines to induce xylem embolism: one involved a pressure collar applied to the stems, while the other consisted of water deprivation (drought). Embolism formation and repair were monitored during stress application and release (recovery). At the same time, stomatal conductance (gs), leaf water potential (Ψleaf) and leaf abscisic acid (ABA) concentration were measured. For each treatment, gene transcript levels were assessed on vessel-associated cells (isolated from leaf petioles by laser microdissection technique) and whole petioles. Both treatments induced severe xylem embolism formation and drops in gs and Ψleaf at a lesser degree and with faster recovery in the case of application of the pressure collar. Leaf ABA concentration only increased upon drought and subsequent recovery. Transcripts linked to sugar mobilisation (encoding a β-amylase and a glucose-6-P transporter) were over-expressed upon stress or recovery, both in vessel-associated cells and whole petioles. However, two aquaporin genes (VvPIP2;1 and VvPIP2;4N) were activated upon stress or recovery only in vessel-associated cells, suggesting a specific effect on embolism refilling. Furthermore, the latter gene was only activated upon drought and subsequent recovery, suggesting that either severe water stress or ABA is required for its regulation.


Scientific Reports | 2016

Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress

Vitantonio Pantaleo; Marco Vitali; Paolo Boccacci; Laura Miozzi; Danila Cuozzo; Walter Chitarra; Franco Mannini; Claudio Lovisolo; Giorgio Gambino

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional control of several pathway intermediates, thus playing pivotal roles in plant growth, development and response to biotic and abiotic stresses. In recent years, the grapevine genome release, small(s)-RNAseq and degradome-RNAseq together has allowed the discovery and characterisation of many miRNA species, thus rendering the discovery of additional miRNAs difficult and uncertain. Taking advantage of the miRNA responsiveness to stresses and the availability of virus-free Vitis vinifera plants and those infected only by a latent virus, we have analysed grapevines subjected to drought in greenhouse conditions. The sRNA-seq and other sequence-specific molecular analyses have allowed us to characterise conserved miRNA expression profiles in association with specific eco-physiological parameters. In addition, we here report 12 novel grapevine-specific miRNA candidates and describe their expression profile. We show that latent viral infection can influence the miRNA profiles of V. vinifera in response to drought. Moreover, study of eco-physiological parameters showed that photosynthetic rate, stomatal conductance and hydraulic resistance to water transport were significantly influenced by drought and viral infection. Although no unequivocal cause–effect explanation could be attributed to each miRNA target, their contribution to the drought response is discussed.


International Journal of Food Microbiology | 2014

Potential uptake of Escherichia coli O157:H7 and Listeria monocytogenes from growth substrate into leaves of salad plants and basil grown in soil irrigated with contaminated water.

Walter Chitarra; Lucia Decastelli; A. Garibaldi; Maria Lodovica Gullino

Outbreaks of foodborne illness, resulting from the consumption of fresh produce contaminated with human pathogens, are increasing. Potential uptake and persistence of human pathogens within edible parts of consumed fresh vegetables become an important issue in food safety. This study was conducted to assess the potential uptake and internalization of Escherichia coli O157:H7 and Listeria monocytogenes from an autoclaved substrate into edible parts of basil and baby salad plants (lettuce, cultivated rocket, wild rocket and corn salad) from 20 to 60-80days after inoculation, when plants are ready to be harvested and commercialized. Plants were grown in mesocosms under different temperature conditions (24°C and 30°C) and the growing substrate was inoculated using contaminated irrigation water (7logCFU/mL). E. coli O157:H7 could be internalized in the leaves of the tested leafy vegetables through the roots and persist up to the harvesting time with negligible differences between 24°C and 30°C. Significant decreases in pathogen titers were observed over time in the growing substrate on which the plants grew, until the last sampling time. In contrast, L. monocytogenes internalized and persisted only in lettuce mesocosms at 24°C. Neither pathogen was observed in basil leaves. Similarly, in basil growing substrates, enteric bacteria were undetectable at the end of the experiments, suggesting that basil plants may produce and release antimicrobial compounds active against both bacteria in root exudates. These results suggest that enteric bacteria are able to persist within baby salad leaves up to market representing a risk for consumers health.


New Phytologist | 2017

Fungal and plant gene expression in the Tulasnella calospora–Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas

Valeria Fochi; Walter Chitarra; Annegret Kohler; Samuele Voyron; Vasanth Singan; Erika Lindquist; Kerrie Barry; Mariangela Girlanda; Igor V. Grigoriev; Francis L. Martin; Raffaella Balestrini; Silvia Perotto

Orchids are highly dependent on their mycorrhizal fungal partners for nutrient supply, especially during early developmental stages. In addition to organic carbon, nitrogen (N) is probably a major nutrient transferred to the plant because orchid tissues are highly N-enriched. We know almost nothing about the N form preferentially transferred to the plant or about the key molecular determinants required for N uptake and transfer. We identified, in the genome of the orchid mycorrhizal fungus Tulasnella calospora, two functional ammonium transporters and several amino acid transporters but found no evidence of a nitrate assimilation system, in agreement with the N preference of the free-living mycelium grown on different N sources. Differential expression in symbiosis of a repertoire of fungal and plant genes involved in the transport and metabolism of N compounds suggested that organic N may be the main form transferred to the orchid host and that ammonium is taken up by the intracellular fungus from the apoplatic symbiotic interface. This is the first study addressing the genetic determinants of N uptake and transport in orchid mycorrhizas, and provides a model for nutrient exchanges at the symbiotic interface, which may guide future experiments.


International Journal of Molecular Sciences | 2012

The Dynamics of Embolism Refilling in Abscisic Acid (ABA)-Deficient Tomato Plants

Francesca Secchi; Irene Perrone; Walter Chitarra; Anna K. Zwieniecka; Claudio Lovisolo; Maciej A. Zwieniecki

Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plants refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plants capacity for refilling.


PLOS ONE | 2015

Effect of Elevated Atmospheric CO2 and Temperature on the Disease Severity of Rocket Plants Caused by Fusarium Wilt under Phytotron Conditions

Walter Chitarra; Ilenia Siciliano; Ilario Ferrocino; Maria Lodovica Gullino; A. Garibaldi

The severity of F. oxysporum f.sp. conglutinans on rocket plants grown under simulated climate change conditions has been studied. The rocket plants were cultivated on an infested substrate (4 log CFU g-1) and a non-infested substrate over three cycles. Pots were placed in six phytotrons in order to simulate different environmental conditions: 1) 400–450 ppm CO2, 18–22°C; 2) 800–850 ppm CO2, 18–22°C; 3) 400–450 ppm CO2, 22–26°C, 4) 800–850 ppm CO2, 22–26°C, 5) 400–450 ppm CO2, 26–30°C; 6) 800–850 ppm CO2, 26–30°C. Substrates from the infested and control samples were collected from each phytotron at 0, 60 and 120 days after transplanting. The disease index, microbial abundance, leaf physiological performances, root exudates and variability in the fungal profiles were monitored. The disease index was found to be significantly influenced by higher levels of temperature and CO2. Plate counts showed that fungal and bacterial development was not affected by the different CO2 and temperature levels, but a significant decreasing trend was observed from 0 up to 120 days. Conversely, the F. oxysporum f.sp. conglutinans plate counts did not show any significantly decrease from 0 up to 120 days. The fungal profiles, evaluated by means of polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), showed a relationship to temperature and CO2 on fungal diversity profiles. Different exudation patterns were observed when the controls and infested plants were compared, and it was found that both CO2 and temperature can influence the release of compounds from the roots of rocket plants. In short, the results show that global climate changes could influence disease incidence, probably through plant-mediated effects, caused by soilborne pathogens.

Collaboration


Dive into the Walter Chitarra's collaboration.

Top Co-Authors

Avatar

Giorgio Gambino

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Perrone

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franco Mannini

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge