Walter E. Cromer
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter E. Cromer.
World Journal of Gastroenterology | 2011
Walter E. Cromer; J. Michael Mathis; Daniel Neil Granger; Ganta V Chaitanya; J. Steven Alexander
Inflammatory bowel diseases (IBD) are a complex group of diseases involving alterations in mucosal immunity and gastrointestinal physiology during both initiation and progressive phases of the disease. At the core of these alterations are endothelial cells, whose continual adjustments in structure and function coordinate vascular supply, immune cell emigration, and regulation of the tissue environment. Expansion of the endothelium in IBD (angiogenesis), mediated by inflammatory growth factors, cytokines and chemokines, is a hallmark of active gut disease and is closely related to disease severity. The endothelium in newly formed or inflamed vessels differs from that in normal vessels in the production of and response to inflammatory cytokines, growth factors, and adhesion molecules, altering coagulant capacity, barrier function and blood cell recruitment in injury. This review examines the roles of the endothelium in the initiation and propagation of IBD pathology and distinctive features of the intestinal endothelium contributing to these conditions.
Inflammatory Bowel Diseases | 2010
Vijay C. Ganta; Walter E. Cromer; Ginny L. Mills; James Traylor; Merilyn H. Jennings; Sarah Daley; Benjamin Clark; J. Michael Mathis; Michael Bernas; Moheb Boktor; Paul Jordan; Marlys H. Witte; J. Steven Alexander
Background: The pathophysiology of inflammatory bowel disease (IBD) includes leukocyte infiltration, blood and lymphatic remodeling, weight loss and protein enteropathy. The roles of angiopoietin‐2 (Ang‐2) in initiating gut inflammation, leukocyte infiltration and angiogenesis are not well understood. Methods: Disease activity index, histopathological scoring, myeloperoxidase assay, immunohistochemistry and sodium dodecyl sulphate‐ polyacrylamide gel electrophoretic methods were employed in the present study to addess the roles of Ang‐2 in experimental colitis. Results: Several important differences were seen in the development of experimental IBD in Ang‐2−/− mice. Although weight change and disease activity differ only slightly in WT and Ang‐2−/− + DSS treated mice, leukocyte infiltration, inflammation and blood and lymphatic vessel density is significantly attenuated compared to WT + DSS mice. Gut capillary fragility and water export (stool blood and form) appear significantly earlier in Ang‐2−/− + DSS mice vs. WT. Colon lengths were also significantly reduced in Ang‐2−/− and gut histopathology was less severe in Ang‐2−/− compared to WT + DSS. Lastly, the decrease in serum protein content in WT + DSS was less severe in Ang‐2−/− + DSS, thus protein losing enteropathy (PLE) a feature of IBD is relieved by Ang‐2−/−. Conclusion: These data demonstrate that in DSS colitis, Ang‐2 mediates inflammatory hemangiogenesis, lymphangiogenesis and neutrophil infiltration to reduce some, but not all clinical features of IBD. The implications for Ang‐2 manipulation in the development of IBD and other inflammatory diseases and treatments involving Ang‐2 are discussed. (Inflamm Bowel Dis 2009)
Lymphatic Research and Biology | 2010
G.V. Chaitanya; S.E. Franks; Walter E. Cromer; Shannon Wells; M. Bienkowska; Merilyn H. Jennings; A. Ruddell; T. Ando; Yuping Wang; Y. Gu; M. Sapp; J.M. Mathis; Paul Jordan; Alireza Minagar; Jonathan S. Alexander
BACKGROUND Inflammatory cytokines dysregulate microvascular function, yet how cytokines affect lymphatic endothelial cells (LEC) are unclear. METHODS AND RESULTS We examined effects of TNF-α, IL-1 beta, and IFN-gamma on LEC proliferation, endothelial cell adhesion molecule (ECAM) expression, capillary formation, and barrier changes in murine (SV-LEC) and human LECs (HMEC-1a). RESULTS All cytokines induced ICAM-1, VCAM-1, MAdCAM-1, and E-selectin in SV-LECs; TNF-α, IL-1 beta; and IFN-gamma induced ECAMs (but not MAdCAM-1) in HMEC-1a. IL-1 beta increased, while IFN-gamma and TNF-α reduced SV-LEC proliferation. While TNF-α induced, IFN-gamma decreased, and IL-1 beta did not show any effect on HMEC-1a proliferation. TNF-α, IL-1 beta, and IFN-gamma each reduced capillary formation in SV-LEC and in HMEC-1a. TNF-α and IL-1 beta reduced barrier in SV-LEC and HMEC-1a; IFN-gamma did not affect SV-LEC barrier, but enhanced HMEC-1a barrier. Inflammatory cytokines alter LEC growth, activation and barrier function in vitro and may disturb lymphatic clearance increasing tissue edema in vivo. CONCLUSION Therapies that maintain or restore lymphatic function (including cytokines blockade), may represent important strategies for limiting inflammation.
Journal of Translational Medicine | 2013
Walter E. Cromer; Chaitanya V. Ganta; Mihir Patel; James Traylor; Christopher Kevil; J. Steven Alexander; J. Michael Mathis
BackgroundUlcerative colitis (UC) is the most common form of inflammatory bowel disease in the USA. A key component of UC is the increase in inflammatory angiogenesis of the colon during active disease. This increase is driven to a great extent by the over expression of VEGF-A. Recently, VEGF165b (VEGF164b in mouse), an anti-angiogenic form of VEGF-A was described and its regulation was determined to be disturbed in many pathologies such as cancer and pre-eclampsia.ResultsThe aims of this study were to examine the role of this inhibitory VEGF by expressing this molecule in a model of intestinal inflammation, and to evaluate its expression as a potential new therapeutic approach for treating UC. A modified model of TNBS colitis was used to determine the effects of rVEGF164b expression on colon inflammation. Expansion of the vascular system was assessed by immunhistochemical methods and macro- and microscopic measurements of inflammation in the colon were measured. Leukocyte invasion of the tissue was measured by myeloperoxidase assay and identification and counting of lymphoid follicles. Both angio- and lymphangiogenesis were reduced by expression of rVEGF164b, which correlated with reduction in both gross and microscopic inflammatory scores. Leukocyte invasion of the tissue was also reduced by rVEGF164b expression.ConclusionsThis is the first report using an endogenous inhibitory VEGF-A isoform for therapy in a model of experimental colitis. Inhibitory VEGF molecules play an important role in maintenance of gut homeostasis and may be dysregulated in UC. The results of this study suggest that restoration of rVEGF164b expression has anti-inflammatory activity in a TNBS model and warrants further examination as a possible therapeutic for UC.
Inflammatory Bowel Diseases | 2015
Walter E. Cromer; Wei Wang; Scott D. Zawieja; Pierre-Yves von der Weid; M. Karen Newell-Rogers; David C. Zawieja
Background:Lymphatic dysfunction has been linked to inflammation since the 1930s. Lymphatic function in the gut and mesentery is grossly underexplored in models of inflammatory bowel disease despite the use of lymphatic occlusion in early models of inflammatory bowel disease. Activation of the innate and adaptive immune system is a hallmark of TNBS-induced inflammation and is linked to disruption of the intrinsic lymph pump. Recent identification of crosstalk between lymphatic vessel resident immune cells and regulation of lymphatic vessel contractility underscore the importance of the timing of lymphatic dysfunction during tissue inflammation in response to TNBS. Methods:To evaluate lymphatic function in TNBS induced inflammation, lymph was collected and flow measured from mesenteric lymphatics. Cellularity and cytokine profile of the lymph was also measured. Histopathology was performed to determine severity of injury and immunofluorescent staining of the mesentery was done to evaluate changes in the population of immune cells that reside near and on gastro-intestinal collecting lymphatics. Results:Lymph transport fell 24 hours after TNBS administration and began recovering at 72 hours. Significant reduction of lymph flow preceded significant increase in histopathological score and occurred simultaneously with increased myeloperoxidase activity. These changes were preceded by increased MHCII+ cells surrounding mesenteric lymphatics leading to an altered lymphatic environment that would favor dysfunction. Conclusions:Alterations in environmental factors that effect lymphatic function occur before the development of gross GI inflammation. Reduced lymphatic function in TNBS-mediated inflammation is likely an early factor in the development of injury and that recovery of function is associated with resolution of inflammation.
Microcirculation | 2012
Ganta Vijay Chaitanya; Walter E. Cromer; Shannon Wells; Merilyn H. Jennings; James Michael Mathis; Alireza Minagar; Jonathan S. Alexander
Please cite this paper as: Chaitanya GV, Cromer W, Wells S, Jennings M, Mathis JM, Minagar A and Alexander JS. Metabolic Modulation of Cytokine‐Induced Brain Endothelial Adhesion Molecule Expression. Microcirculation 19: 155–165, 2012.
American Journal of Physiology-heart and Circulatory Physiology | 2015
Mohammad Jafarnejad; Walter E. Cromer; Roland Kaunas; Shenyuan L. Zhang; David C. Zawieja; James E. Moore
The shear stress applied to lymphatic endothelial cells (LEC) by lymph flow changes dramatically under normal conditions as well as in response to disease conditions and immune reactions. In general, LEC are known to regulate the contraction frequency and strength of lymphatic pumping in response to shear stress. Intracellular calcium concentration ([Ca2+]i) is an important factor that regulates lymphatic contraction characteristics. In this study, we measured changes in the [Ca2+]i under different shear stress levels and determined the source of this calcium signal. Briefly, human dermal LEC were cultured in custom-made microchannels for 3 days before loading with 2 µM fura-2 AM, a ratiometric calcium dye to measure [Ca2+]i. Step changes in shear stress resulted in a rapid increase in [Ca2+]i followed by a gradual return to the basal level and sometimes below the initial baseline (45.2 ± 2.2 nM). The [Ca2+]i reached a peak at 126.2 ± 5.6 nM for 10 dyn/cm2 stimulus, whereas the peak was only 71.8 ± 5.4 nM for 1 dyn/cm2 stimulus, indicating that the calcium signal depends on the magnitude of shear stress. Removal of the extracellular calcium from the buffer or pharmocological blockade of calcium release-activated calcium (CRAC) channels significantly reduced the peak [Ca2+]i, demonstrating a role of extracellular calcium entry. Inhibition of endoplasmic reticulum (ER) calcium pumps showed the importance of intracellular calcium stores in the initiation of this signal. In conclusion, we demonstrated that the shear-mediated calcium signal is dependent on the magnitude of the shear and involves ER store calcium release and extracellular calcium entry.
Microcirculation | 2010
Walter E. Cromer; Merilyn H. Jennings; Yoshinubo Odaka; J. Michael Mathis; J. Steven Alexander
Please cite this paper as: Cromer, Jennings, Odaka, Mathis and Alexander (2010). Murine rVEGF164b, an Inhibitory VEGF Reduces VEGF‐A‐Dependent Endothelial Proliferation and Barrier Dysfunction. Microcirculation17(7), 536–547.
Lymphatic Research and Biology | 2013
Eric A. Bridenbaugh; Wei Wang; Maya Srimushnam; Walter E. Cromer; Scott D. Zawieja; Susan E. Schmidt; Daniel Jupiter; Hung Chung Huang; Vincent Van Buren; David C. Zawieja
The principal function of the lymphatic system is to transport lymph from the interstitium to the nodes and then from the nodes to the blood. In doing so lymphatics play important roles in fluid homeostasis, macromolecular/antigen transport and immune cell trafficking. To better understand the genes that contribute to their unique physiology, we compared the transcriptional profile of muscular lymphatics (prenodal mesenteric microlymphatics and large, postnodal thoracic duct) to axillary and mesenteric arteries and veins isolated from rats. Clustering of the differentially expressed genes demonstrated that the lymph versus blood vessel differences were more profound than between blood vessels, particularly the microvessels. Gene ontology functional category analysis indicated that microlymphatics were enriched in antigen processing/presentation, IgE receptor signaling, catabolic processes, translation and ribosome; while they were diminished in oxygen transport, regulation of cell proliferation, glycolysis and inhibition of adenylate cyclase activity by G-proteins. We evaluated the differentially expressed microarray genes/products by qPCR and/or immunofluorescence. Immunofluorescence documented that multiple MHC class II antigen presentation proteins were highly expressed by an antigen-presenting cell (APC) type found resident within the lymphatic wall. These APCs also expressed CD86, a co-stimulatory protein necessary for T-cell activation. We evaluated the distribution and phenotype of APCs within the pre and postnodal lymphatic network. This study documents a novel population of APCs resident within the walls of muscular, prenodal lymphatics that indicates novel roles in antigen sampling and immune responses. In conclusion, these prenodal lymphatics exhibit a unique profile that distinguishes them from blood vessels and highlights the role of the lymphatic system as an immunovascular system linking the parenchymal interstitium, lymph nodes and the blood.
Life sciences in space research | 2018
Walter E. Cromer; David C. Zawieja
Space flight causes a number of alterations in physiological systems, changes in the immunological status of subjects, and altered interactions of the host to environmental stimuli. We studied the effect of space flight on the lymphatic system of the gastrointestinal tract which is responsible for lipid transport and immune surveillance which includes the host interaction with the gut microbiome. We found that there were signs of tissue damage present in the space flown animals that was lacking in ground controls (epithelial damage, crypt morphological changes, etc.). Additionally, morphology of the lymphatic vessels in the tissue suggested a collapsed state at time of harvest and there was a profound change in the retention of lipid in the villi of the ileum. Contrary to our assumptions there was a reduction in tissue fluid volume likely associated with other fluid shifts described. The reduction of tissue fluid volume in the colon and ileum is a likely contributing factor to the state of the lymphatic vessels and lipid transport issues observed. There were also associated changes in the number of MHC-II+ immune cells in the colon tissue, which along with reduced lymphatic competence would favor immune dysfunction in the tissue. These findings help expand our understanding of the effects of space flight on various organ systems. It also points out potential issues that have not been closely examined and have to potential for the need of countermeasure development.