Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter E. Finkbeiner is active.

Publication


Featured researches published by Walter E. Finkbeiner.


Journal of the American College of Cardiology | 1994

Effects of long-term right ventricular apical pacing on left ventricular perfusion, innervation, function and histology

Michael A. Lee; Michael W. Dae; Jonathan J. Langberg; Jerry C. Griffin; Michael C. Chin; Walter E. Finkbeiner; J.William O'Connell; Elias H. Botvinick; Melvin M. Scheinman; Mårten Rosenqvist

OBJECTIVES The purpose of this study was to better understand the effects of long-term right ventricular pacing on left ventricular perfusion, innervation, function and histology. BACKGROUND Long-term right ventricular apical pacing is associated with increased congestive heart failure and mortality compared with atrial pacing. The exact mechanism for these changes is unknown. In this study, left ventricular perfusion, sympathetic innervation, function and histologic appearance after long-term pacing were studied in dogs in an attempt to see whether basic changes might be present that might ultimately be associated with the adverse clinical outcome. METHODS A total of 24 dogs were studied. Sixteen underwent radiofrequency ablation of the atrioventricular (AV) junction to produce complete AV block. Seven of these underwent long-term pacing from the right ventricular apex (ventricular paced group), and nine had atrial and right ventricular apical pacing with AV synchrony (dual-chamber paced group). A control group of eight dogs had sham ablations with normal AV conduction. These dogs had atrial pacing only. Regional perfusion and sympathetic innervation were studied in all dogs by imaging with thallium-201 and [I123]metaiodobenzylguanidine, respectively. The degree of innervation was also determined by assay of tissue norepinephrine levels. Left ventricular function was assessed by radionuclide ventriculography. Cardiac histology was studied with both light and electron microscopy. RESULTS Mismatching of perfusion and innervation in the ventricular paced group was noted, with perfusion abnormalities of both the septum and free wall. Regional [I123]metaiodobenzylguanidine distribution was homogeneous. Tissue norepinephrine levels were elevated in both the ventricular and dual-chamber paced groups compared with the control group. No light or electron microscopic findings were noted in any groups. In the dual-chamber paced group, diastolic dysfunction was noted, with normal systolic function. CONCLUSIONS Ventricular pacing resulted in regional changes in tissue perfusion and heterogeneity between perfusion and sympathetic innervation. Both ventricular and dual-chamber pacing were associated with an increase in tissue catecholamine activity. The abnormal activation of the ventricles via right ventricular apical pacing may result in multiple abnormalities of cardiac function, which may ultimately affect clinical outcome.


Journal of Clinical Investigation | 2007

Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients

Jun Araya; Stephanie Cambier; Jennifer A. Markovics; Paul J. Wolters; David M. Jablons; Arthur Hill; Walter E. Finkbeiner; Kirk D. Jones; V. Courtney Broaddus; Dean Sheppard; Andrea Barzcak; Yuanyuan Xiao; David J. Erle; Stephen L. Nishimura

Squamous metaplasia (SM) is common in smokers and is associated with airway obstruction in chronic obstructive pulmonary disease (COPD). A major mechanism of airway obstruction in COPD is thickening of the small airway walls. We asked whether SM actively contributes to airway wall thickening through alteration of epithelial-mesenchymal interactions in COPD. Using immunohistochemical staining, airway morphometry, and fibroblast culture of lung samples from COPD patients; genome-wide analysis of an in vitro model of SM; and in vitro modeling of human airway epithelial-mesenchymal interactions, we provide evidence that SM, through the increased secretion of IL-1beta, induces a fibrotic response in adjacent airway fibroblasts. We identify a pivotal role for integrin-mediated TGF-beta activation in amplifying SM and driving IL-1beta-dependent profibrotic mesenchymal responses. Finally, we show that SM correlates with increased severity of COPD and that fibroblast expression of the integrin alpha(v)beta(8), which is the major mediator of airway fibroblast TGF-beta activation, correlated with disease severity and small airway wall thickening in COPD. Our findings have identified TGF-beta as a potential therapeutic target for COPD.


Journal of Pediatric Surgery | 1984

Experimental pulmonary hypoplasia and oligohydramnios: Relative contributions of lung fluid and fetal breathing movements***

N. Scott Adzick; Michael R. Harrison; Philip L. Glick; Robin L. Villa; Walter E. Finkbeiner

Inhibition of fetal breathing movements or increased loss of fetal lung fluid into the amniotic space have been suggested as two possible mechanisms causing pulmonary hypoplasia in the setting of oligohydramnios (OH). We examined the effect of OH produced by amniotic fluid shunting (AS) into the maternal abdominal cavity, ablation of fetal breathing by high cervical cord transection (CT), and CT and AS combined on fetal rabbit lungs at 24 days gestation. Lung growth at term (31 days) was measured by lung DNA content and wet lung weight. Compared to unoperated controls, newborns undergoing either AS alone or CT alone had much smaller lungs. When compared to CT alone, CT with AS resulted in a further significant decrease in lung growth. Thus, even when fetal breathing was eliminated by CT, AS caused further hypoplasia. If pulmonary hypoplasia in OH is related to increased loss of lung fluid, then tracheal ligation (TL) should prevent this process. TL combined with AS produced lungs with the same DNA content as controls, and thus the hypoplastic effects of OH were reversed by TL. Although fetal breathing is clearly important for lung growth, it appears that inhibition of fetal breathing is not the predominant etiology of oligohydramnios-related pulmonary hypoplasia. Fetal intrapulmonary fluid is formed by active transport across pulmonary epithelium, and may serve to distend potential airways and stimulate growth. These experiments suggest that lung hypoplasia associated with OH is related to loss of this internal stenting force.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction

Fen Huang; Hongkang Zhang; Meng Wu; Huanghe Yang; Makoto Kudo; Christian J. Peters; Prescott G. Woodruff; Owen D. Solberg; Matthew Donne; Xiaozhu Huang; Dean Sheppard; John V. Fahy; Paul J. Wolters; Brigid L.M. Hogan; Walter E. Finkbeiner; Min Li; Yuh Nung Jan; Lily Yeh Jan; Jason R. Rock

Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.


The Journal of Allergy and Clinical Immunology | 2009

In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects

Nilceia Lopez-Souza; Silvio Favoreto; Hofer Wong; Theresa Ward; Shigeo Yagi; David P. Schnurr; Walter E. Finkbeiner; Gregory Dolganov; Jonathan H. Widdicombe; Homer A. Boushey; Pedro C. Avila

BACKGROUND Human rhinoviruses (HRVs) characteristically cause upper respiratory tract infection, but they also infect the lower airways, causing acute bronchitis and exacerbating asthma. OBJECTIVE Our purpose was to study ex vivo the differences in the response to HRV infection of nasal and bronchial epithelial cultures from the same healthy and asthmatic individuals using conditions favoring development of fully differentiated, pseudostratified mucociliary epithelium. METHODS Cells from the inferior turbinates and bronchial tree of 5 healthy and 6 asthmatic individuals were cultured at an air-liquid interface. Cultures were infected with HRV-16, and after 48 hours, the degree of infection was measured. RESULTS Baseline median transepithelial resistance was lower in human bronchial epithelial (HBE) cell cultures than in human nasal epithelial (HNE) cell cultures (195 Omega.cm2 [95% CI, 164-252] vs 366 Omega.cm2 [95% CI, 234-408], respectively; P < .01). Virus replicated more easily in HBE cells than in HNE cells based on virus shedding in apical wash (log tissue culture infective dose of 50%/0.1 mL = 2.0 [95% CI, 1.0-2.5] vs 0.5 [95% CI, 0.5-1.5], P < .01) and on a 20- to 30-fold greater viral load and number of infected cells in HBE cell cultures than in HNE cell cultures. The increases in expression of RANTES and double-stranded RNA-dependent protein kinase were greater in HBE cell cultures than in HNE cell cultures, as were the concentrations of IL-8, IL-1alpha, RANTES, and IP-10 in basolateral medium. However, no significant differences between asthmatic and healthy subjects (including IFN-beta1 expression) were found. CONCLUSIONS Differentiated nasal epithelial cells might have mechanisms of increased resistance to rhinovirus infection compared with bronchial epithelial cells. We could not confirm previous reports of increased susceptibility to HRV infection in epithelial cells from asthmatic subjects.


Science Translational Medicine | 2014

Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression.

Guido Veit; Radu G. Avramescu; Doranda Perdomo; Puay Wah Phuan; Miklos Bagdany; Pirjo M. Apaja; Florence Borot; Daniel Szollosi; Yu Sheng Wu; Walter E. Finkbeiner; Tamás Hegedüs; A. S. Verkman; Gergely L. Lukacs

Ivacaftor, a potentiator of ΔF508-CFTR channel function in cystic fibrosis, reduces the ability of corrector drugs to rescue the ΔF508-CFTR membrane trafficking defect. Potentiating Trouble Cystic fibrosis is a genetic disease caused by mutations of the CFTR ion channel, resulting in pulmonary and other complications. Ivacaftor is the only targeted drug approved for cystic fibrosis, but it is not effective enough to treat the severest and most common form of this disease. Ivacaftor is a “potentiator,” which means that it improves the activity of mutant CFTR, but cannot work if there is no CFTR on the cell surface. Other drugs, called “correctors,” help bring mutant CFTR to the cell surface, but two manuscripts by Cholon and Veit and co-authors now show that combining the two types of drugs does not work effectively because potentiators make CFTR less stable, accelerating the removal of this channel from the cell membrane. Cystic fibrosis (CF) is caused by mutations in the CF transmembrane regulator (CFTR) that result in reduced anion conductance at the apical membrane of secretory epithelia. Treatment of CF patients carrying the G551D gating mutation with the potentiator VX-770 (ivacaftor) largely restores channel activity and has shown substantial clinical benefit. However, most CF patients carry the ΔF508 mutation, which impairs CFTR folding, processing, function, and stability. Studies in homozygous ΔF508 CF patients indicated little clinical benefit of monotherapy with the investigational corrector VX-809 (lumacaftor) or VX-770, whereas combination clinical trials show limited but significant improvements in lung function. We show that VX-770, as well as most other potentiators, reduces the correction efficacy of VX-809 and another investigational corrector, VX-661. To mimic the administration of VX-770 alone or in combination with VX-809, we examined its long-term effect in immortalized and primary human respiratory epithelia. VX-770 diminished the folding efficiency and the metabolic stability of ΔF508-CFTR at the endoplasmic reticulum (ER) and post-ER compartments, respectively, causing reduced cell surface ΔF508-CFTR density and function. VX-770–induced destabilization of ΔF508-CFTR was influenced by second-site suppressor mutations of the folding defect and was prevented by stabilization of the nucleotide-binding domain 1 (NBD1)–NBD2 interface. The reduced correction efficiency of ΔF508-CFTR, as well as of two other processing mutations in the presence of VX-770, suggests the need for further optimization of potentiators to maximize the clinical benefit of corrector-potentiator combination therapy in CF.


American Journal of Respiratory and Critical Care Medicine | 2012

Airway Epithelial miRNA Expression Is Altered in Asthma

Owen D. Solberg; Edwin Justin Ostrin; Michael I. Love; Jeffrey C. Peng; Nirav R. Bhakta; Lydia Hou; Christine P. Nguyen; Margaret Solon; Cindy Nguyen; Andrea J. Barczak; Lorna Zlock; Denitza P. Blagev; Walter E. Finkbeiner; K. Mark Ansel; Joseph R. Arron; David J. Erle; Prescott G. Woodruff

RATIONALE Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. OBJECTIVES To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13-regulated miRNAs. METHODS We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. MEASUREMENTS AND MAIN RESULTS Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. CONCLUSIONS Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway epithelial cell differentiation. Clinical trial registered with www.clinicaltrials.gov (NCT 00595153).


The FASEB Journal | 2011

Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction

Wan Namkung; Zhen Yao; Walter E. Finkbeiner; A. S. Verkman

TMEM16A (ANO1) is a calcium‐activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell‐based functional screening of ~110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca2+. By patch‐clamp, N‐aroylaminothiazole “activators” (Eact) strongly increased Cl‐ current at 0 Ca2+, whereas tetrazolylbenzamide “potentiators” (Fact) were not active at 0 Ca2+ but reduced the EC50 for Ca2+‐dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (Eact) and potentiator (Fact) produced large and more sustained CaCC Cl‐currents than general agonists of Ca2+ signaling, with EC50 3–6 μM and Cl‐ conductance comparable to that induced transiently by Ca2+‐elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl‐ conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL‐4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small‐molecule, TMEM16A‐targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.—Namkung, W., Yao, Z., Finkbeiner, W. E., Verkman, A. S. Small‐molecule activators of TMEM16A, a calcium‐activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. FASEB J. 25, 4048–4062 (2011). www.fasebj.org


Circulation | 1989

Assessment of myocardial salvage after ischemia and reperfusion using magnetic resonance imaging and spectroscopy.

Christopher L. Wolfe; Michael E. Moseley; Mats G. Wikstrom; Richard E. Sievers; Michael F. Wendland; Jean W. Dupon; Walter E. Finkbeiner; Martin J. Lipton; William W. Parmley; Robert C. Brasch

To test the hypothesis that contrast-enhanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) can differentiate reversible from irreversible myocardial injury, these modalities were used to study ischemia and reperfusion in a rat model. The presence of ischemia and reperfusion were confirmed with radiolabeled microspheres (n = 6). Groups of animals were subjected to either 16 (n = 17), 30 (n = 14), 60 (n = 11), or 90 (n = 14) minutes of left coronary artery (LCA) occlusion and 60 minutes reperfusion. After albumin-gadolinium (Gd)-DTPA injection, contrast-enhanced, T1-weighted, spin-echo proton images were acquired at baseline and every 16 minutes during LCA occlusion and reperfusion. In separate experiments, 31phosphorus (31P) spectra were acquired at similar time points during ischemia and reperfusion. After 16 minutes occlusion, normally perfused myocardium enhanced significantly compared with ischemic myocardium on MRI (104 +/- 7.9% vs. 61 +/- 11.0%, p less than 0.05, n = 5, mean +/- SEM, % of baseline value). MRS showed reduced phosphocreatine (PCr) and adenosine triphosphate (ATP) (58.8 +/- 2.4%, p less than or equal to 0.01; 81.4 +/- 2.4, p less than or equal to 0.01, n = 12). After 16 or 30 minutes ischemia, reflow resulted in uniform MRI signal intensity of the ischemic zone compared with normal myocardium (93.5 +/- 11.3 vs. 80.9 +/- 7.0, p = NS, n = 11, % of baseline value at 30 minutes reperfusion) and PCr recovery on MRS (94.3 +/- 4.0%, p = NS, n = 20, % baseline value at 30 minutes reflow). After 60 and 90 minutes ischemia, reflow resulted in marked enhancement of reperfused compared with normal myocardium on MRI (254.0 +/- 30.0 vs. 78.3 +/- 9.2, p less than or equal to 0.01, n = 10) and no recovery of PCr on MRS (64.1 +/- 3.0, p = NS, n = 14). Triphenyltetrazolium chloride (TTC) staining revealed transmural myocardial infarction (MI) in all hearts subjected to 60 or 90 minutes ischemia and reflow, and small nontransmural MIs in only 2/11 hearts subjected to 16 or 30 minutes ischemia and reperfusion. Thus, 1) MRI with albumin-Gd-DTPA is useful for identifying myocardial ischemia by enhancing the contrast between normally perfused and ischemic myocardia; 2) MRI with albumin-Gd-DTPA is useful for identifying reperfusion after myocardial ischemia; and 3) after reperfusion, reversible can be distinguished from irreversible myocardial injury by characteristic findings on MRI and MRS.


PLOS ONE | 2006

Wnt and Hedgehog Are Critical Mediators of Cigarette Smoke-Induced Lung Cancer

Hassan Lemjabbar-Alaoui; Vijay Dasari; Sukhvinder S. Sidhu; Aklilu T Mengistab; Walter E. Finkbeiner; Marianne Gallup; Carol Basbaum

Background Lung cancer is the leading cause of cancer death in the world, and greater than 90% of lung cancers are cigarette smoke-related. Current treatment options are inadequate, because the molecular basis of cigarette-induced lung cancer is poorly understood. Methodology/Principal Findings Here, we show that human primary or immortalized bronchial epithelial cells exposed to cigarette smoke for eight days in culture rapidly proliferate, show anchorage-independent growth, and form tumors in nude mice. Using this model of the early stages of smoke-induced tumorigenesis, we examined the molecular changes leading to lung cancer. We observed that the embryonic signaling pathways mediated by Hedgehog and Wnt are activated by smoke. Pharmacological inhibition of these pathways blocked the transformed phenotype. Conclusions/Significance These experiments provide a model in which the early stages of smoke-induced tumorigenesis can be elicited, and should permit us to identify molecular changes driving this process. Results obtained so far indicate that smoke-induced lung tumors are driven by activation of two embryonic regulatory pathways, Hedgehog (Hh) and Wnt. Based on the current and emerging availability of drugs to inhibit Hh and Wnt signaling, it is possible that an understanding of the role of Hh and Wnt in lung cancer pathogenesis will lead to the development of new therapies.

Collaboration


Dive into the Walter E. Finkbeiner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorna Zlock

University of California

View shared research outputs
Top Co-Authors

Avatar

A. S. Verkman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol Basbaum

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge