Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter F. Bobrowski is active.

Publication


Featured researches published by Walter F. Bobrowski.


Experimental Neurology | 2003

Cytoskeletal protein degradation and neurodegeneration evolves differently in males and females following experimental head injury

Nancy C. Kupina; Megan R. Detloff; Walter F. Bobrowski; Bradley Snyder; Edward D. Hall

The resulting neuropathological degeneration that occurs following a traumatic brain injury (TBI) is a consequence of both immediate and secondary neurochemical sequelae. Proteolysis of cytoskeletal proteins, triggered by calcium-mediated events, is believed to be a particularly significant contributor to TBI-induced neuronal death. To date, efforts to associate cytoskeletal degradation and neurodegeneration in TBI have been primarily qualitative or semiquantitative. The objectives of this study were (1). to quantitatively describe, over a posttraumatic time course, the relationship and mechanisms of cytoskeletal degradation (Western blot) and neurodegeneration (silver staining) in male and female mice following a moderately severe weight-drop impact-acceleration head injury; (2). to evaluate gender differences in the response to TBI; and (3). to examine the potential therapeutic window for future pharmacological treatment strategies. In male and female mice, we report a close correlation in the time courses of neurofilament M protein degradation and alpha-spectrin breakdown products (SBDP 150 and 145) with the peak magnitude of neurodegeneration, as quantified by silver staining. Evidence from the increased patterns of SBDPs suggests that both calpain and caspase-3 are involved. In general, males incurred peak protein degradation and neurodegeneration within 3 days after injury, while in females this did not occur until 14 days. The neuroprotective effects of estrogen are believed to be key factors in the superior outcome of female vs male mice following TBI. In mice, the therapeutic window of opportunity for pharmacological intervention aimed at limiting cytoskeletal degradation might be as much as 24 h following injury. Evidence of a protracted time course of cytoskeletal degradation, especially in females, suggests a potential for an extended treatment-duration following TBI.


Drug Metabolism and Disposition | 2006

Porcine Brain Microvessel Endothelial Cells as an in Vitro Model to Predict in Vivo Blood-Brain Barrier Permeability

Yan Zhang; Cheryl S. W. Li; Yuyang Ye; Kjell Johnson; Julie Poe; Shannon Johnson; Walter F. Bobrowski; Rosario Garrido; C Madhu

The objective of the study was to establish primary cultured porcine brain microvessel endothelial cells (PBMECs) as an in vitro model to predict the blood-brain barrier (BBB) permeability in vivo. The intercellular tight junction formation of PBMECs was examined by electron microscopy and measured by transendothelial electrical resistance (TEER). The mRNA expression of several BBB transporters in PBMECs was determined by reverse transcriptionpolymerase chain reaction analysis. The in vitro permeability of 16 structurally diverse compounds, representing a range of passive diffusion and transporter-mediated mechanisms of brain penetration, was determined in PBMECs. Except for the perfusion flow rate marker diazepam, the BBB permeability of these compounds was determined either in our laboratory or as reported in literature using in situ brain perfusion technique in rats. Results in the present study showed that PBMECs had a high endothelium homogeneity, an mRNA expression of several BBB transporters, and high TEER values. Culturing with rat astrocyte-conditioned medium increased the TEER of PBMECs, but had no effect on the permeability of sucrose, a paracellular diffusion marker. The PBMEC permeability of lipophilic compounds measured under stirred conditions was greatly increased compared with that measured under unstirred conditions. The PBMEC permeability of the 15 test compounds, determined under the optimized study conditions, correlated with the in situ BBB permeability with an r2 of 0.60. Removal of the three system L substrates increased the r2 to 0.89. In conclusion, the present PBMEC model may be used to predict or rank the in vivo BBB permeability of new chemical entities in a drug discovery setting.


Toxicologic Pathology | 2007

An Immunohistochemical Approach to Differentiate Hepatic Lipidosis from Hepatic Phospholipidosis in Rats

Leslie Obert; Gregg Sobocinski; Walter F. Bobrowski; Alan L. Metz; Mark D. Rolsma; Douglas M. Altrogge; Robert W. Dunstan

Hepatocellular vacuolation can be a diagnostic challenge since cytoplasmic accumulations of various substances (lipid, water, phospholipids, glycogen, and plasma) can have a similar morphology. Cytoplasmic accumulation of phospholipids following administration of cationic amphiphilic drugs (CAD) can be particularly difficult to differentiate from nonphosphorylated lipid accumulations at the light microscopic level. Histochemical methods (Sudan Black, Oil Red-O, Nile Blue, etc.) can be used to identify both nonphosphorylated and/or phosphorylated lipid accumulations, but these techniques require non-paraffin-embedded tissue and are only moderately sensitive. Thus, electron microscopy is often utilized to achieve a definitive diagnosis based upon the characteristic morphologic features of phospholipid accumulations; however, this is a low throughput and labor intense procedure. In this report, we describe the use of immunohistochemical staining for LAMP-2 (a lysosome-associated protein) and adipophilin (a protein that forms the membrane around non-lysosomal lipid droplets) to differentiate phospholipidosis and lipidosis, respectively in the livers of rats. This staining procedure can be performed on formalin-fixed paraffin embedded tissues, is more sensitive than histochemistry, and easier to perform than ultrastructural evaluation.


Toxicologic Pathology | 2007

Human Skin in Organ Culture and Human Skin Cells (Keratinocytes and Fibroblasts) in Monolayer Culture for Assessment of Chemically Induced Skin Damage

James Varani; Patricia Perone; Diana M. Spahlinger; Lisa M. Singer; Kelly L. Diegel; Walter F. Bobrowski; Robert W. Dunstan

Human skin cells (epidermal keratinocytes and dermal fibroblasts) in monolayer culture and human skin in organ culture were exposed to agents that are known to produce irritation (redness, dryness, edema and scaly crusts) when applied topically to skin. Among the agents used were three well accepted contact irritants (i.e., all-trans retinoic acid [RA], sodium lauryl sulfate [SLS] and benzalkonium chloride) as well as the corrosive organic mercury compound, aminophenyl mercuric acetate (APMA), and 5 contact sensitizers (oxazolone, nickel sulfate, eugenol, isoeugenol and ethylene glycol dimethacrylate [EGDM]). As a group, the contact irritants (including the corrosive mercuric compound) were cytotoxic for keratinocytes and fibroblasts and suppressed growth at lower concentrations than the contact sensitizers. The contact irritants also produced histological changes (hyperplasia, incomplete keratinization, loss of the granular layer, acantholysis and necrosis) in organ-cultured skin at dose levels at which the contact sensitizers appeared to be inert. Finally, the profile of secreted molecules from organ-cultured skin was different in the presence of contact irritants versus contact sensitizers. Taken together, these data suggest that the use of organ-cultured skin in conjunction with cells derived from the skin in monolayer culture may provide an initial approach to screening agents for deleterious changes in skin.


Journal of Pharmacology and Experimental Therapeutics | 2015

PF-1355, a Mechanism-Based Myeloperoxidase Inhibitor, Prevents Immune Complex Vasculitis and Anti–Glomerular Basement Membrane Glomerulonephritis

Wei Zheng; Roscoe L. Warner; Roger Benjamin Ruggeri; Chunyan Su; Christian Cortes; Athanasia Skoura; Jessica Ward; Kay Ahn; Amit S. Kalgutkar; Dexue Sun; Tristan S. Maurer; Paul D. Bonin; Carlin Okerberg; Walter F. Bobrowski; Thomas T. Kawabe; Yanwei Zhang; Timothy M. Coskran; Sammy Bell; Bhupesh Kapoor; Kent J. Johnson; Leonard Buckbinder

Small vessel vasculitis is a life-threatening condition and patients typically present with renal and pulmonary injury. Disease pathogenesis is associated with neutrophil accumulation, activation, and oxidative damage, the latter being driven in large part by myeloperoxidase (MPO), which generates hypochlorous acid among other oxidants. MPO has been associated with vasculitis, disseminated vascular inflammation typically involving pulmonary and renal microvasculature and often resulting in critical consequences. MPO contributes to vascular injury by 1) catabolizing nitric oxide, impairing vasomotor function; 2) causing oxidative damage to lipoproteins and endothelial cells, leading to atherosclerosis; and 3) stimulating formation of neutrophil extracellular traps, resulting in vessel occlusion and thrombosis. Here we report a selective 2-thiouracil mechanism-based MPO inhibitor (PF-1355 [2-(6-(2,5-dimethoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide) and demonstrate that MPO is a critical mediator of vasculitis in mouse disease models. A pharmacokinetic/pharmacodynamic response model of PF-1355 exposure in relation with MPO activity was derived from mouse peritonitis. The contribution of MPO activity to vasculitis was then examined in an immune complex model of pulmonary disease. Oral administration of PF-1355 reduced plasma MPO activity, vascular edema, neutrophil recruitment, and elevated circulating cytokines. In a model of anti–glomerular basement membrane disease, formerly known as Goodpasture disease, albuminuria and chronic renal dysfunction were completely suppressed by PF-1355 treatment. This study shows that MPO activity is critical in driving immune complex vasculitis and provides confidence in testing the hypothesis that MPO inhibition will provide benefit in treating human vasculitic diseases.


Toxicologic Pathology | 2010

Cardiovascular Effects in Rats following Exposure to a Receptor Tyrosine Kinase Inhibitor

Shirley A. Aguirre; Jonathan R. Heyen; Walter Collette; Walter F. Bobrowski; Eileen R. Blasi

The receptor tyrosine kinase receptor (RTK) signaling pathway, mesenchymal-epithelial transition factor (c-Met)/hepatocyte growth factor receptor (HGFR), has been implicated in oncogenesis and is a target of interest in cancer therapy. PF-04254644 is a potent and selective inhibitor of c-Met/HGFR. Wide ligand binding profiling of PF-04254644 revealed a potentially significant interaction with phosphodiesterase (PDE) 3, and follow-up PDE enzyme activity assays confirmed PF-04254644 as a potent inhibitor of PDE3 as well as other PDEs (1, 2, 5, 10, and 11). Clinical observations, laboratory, and echocardiography parameters were recorded in Sprague-Dawley (SD) rats that received PF-04254644 oral dosing for up to seven consecutive days. Toxicological evaluations revealed myocardial degeneration as an adverse event at all tested doses. Echocardiographic evaluations revealed an increase in heart rate (HR) and contractility after the first dose with PF-04254644 and myocardial fibrosis correlated with decreased cardiac function after repeat dosing. A study in telemetry-instrumented rats substantiated that PF-04254644 induced a sustained increased HR and decreased contractility after six days of treatment. Data suggest that the decreased cardiac function and cardiotoxicity are likely due to inhibition of multiple PDEs by PF-04254644.


Toxicologic Pathology | 2001

Systemic Proliferative Changes and Clinical Signs in Cynomolgus Monkeys Administered a Recombinant Derivative of Human Epidermal Growth Factor

James F. Reindel; Alexander W. Gough; Gary D. Pilcher; Walter F. Bobrowski; Gregg Sobocinski; Felix A. de la Iglesia

Epidermal growth factor (EGF) effects have been explored extensively in vivo in rodents, but little is known about trophic responses in nonhuman primates. A previous publication reports the hyperplastic epithelial/parenchymal changes noted in the digestive tract (tongue, esophagus, stomach, intestine, liver, gallbladder, pancreas, and salivary glands) of adult cynomolgus monkeys treated with recombinant human EGF1-48 (rhEGF1-48). This report documents clinical findings and structural effects in the remaining epithelium-containing tissues of these animals. Two monkeys/sex/dose received rhEGF1-48 by intravenous bolus at 0 (vehicle), 10, 100, 500 (females only), or 1,000 μg/kg/day (males only) daily for up to 2 weeks. Treatment- and dose-related clinical findings included emesis, fecal alterations (soft feces and diarrhea), lacrimation, nasal discharge, hypoactivity, transient hypotension, and salivation after dosing. Male monkeys administered 1000 μg/kg became moribund after 5 days of treatment and were necropsied. All other monkeys completed the 2-week treatment period. Necropsy findings in nongastrointestinal tissues were: enlarged, pale kidneys at 100 μ g/kg and greater; small thymuses seen sporadically at all doses; and enlarged adrenals and small thyroids in males at 1,000 μg/kg. Respective organ-to-brain weight ratios at 500 and 1,000 μg/kg for kidneys were 1.5- and 2.6-fold greater and for heart were 1.7- and 1.3-fold greater than controls. Microscopically, pronounced dose-related epithelial hypertrophy and hyperplasia were evident in kidney, urinary bladder, skin (epidermis and adnexa), mammary gland, prostate, seminal vesicles, epididymis, uterus, cervix, vagina, thyroid, thymus, tonsillar crypts, cornea, trachea, and pulmonary airways. Epitheliotrophic effects were conspicuous in many tissues at 100 to 1,000 μg/kg. Changes to renal collecting ducts were present at 10μg/kg, suggesting that kidneys were a relatively sensitive target. Proliferative alterations were not apparent in testes, intraocular structures, brain ependyma and choroid plexus at any dose. Aside from the noted exceptions, rhEGF1-48 was a pantrophic epithelial mitogen in cynomolgus monkeys when used intravenously at suprapharmacologic doses.


Toxicologic Pathology | 2014

Characterization, Biomarkers, and Reversibility of a Monoclonal Antibody-induced Immune Complex Disease in Cynomolgus Monkeys (Macaca fascicularis)

Jonathan R. Heyen; Jennifer L. Rojko; Mark Evans; Thomas P. Brown; Walter F. Bobrowski; Allison Vitsky; Shana Dalton; Niraj K. Tripathi; Sangeetha Subbarao Bollini; Theodore R. Johnson; John C. Lin; Nasir K. Khan; Bora Han

Two 6-month repeat-dose toxicity studies in cynomolgus monkeys illustrated immune complex–mediated adverse findings in individual monkeys and identified parameters that potentially signal the onset of immune complex–mediated reactions following administration of RN6G, a monoclonal antibody (mAb). In the first study, 3 monkeys exhibited nondose-dependent severe clinical signs accompanied by decreased erythrocytes with increased reticulocytes, neutrophilia, monocytosis, thrombocytopenia, coagulopathy, decreased albumin, azotemia, and increased serum levels of activated complement products, prompting unscheduled euthanasia. Histologically, immunohistochemical localization of RN6G was associated with monkey immunoglobulin and complement components in glomeruli and other tissues, attributable to immune complex disease (ICD). All 3 animals also had anti-RN6G antibodies and decreased plasma levels of RN6G. Subsequently, an investigational study was designed and conducted with regulatory agency input to detect early onset of ICD and assess reversibility to support further clinical development. Dosing of individual animals ceased when biomarkers of ICD indicated adverse findings. Of the 12 monkeys, 1 developed anti-RN6G antibodies and decreased RN6G exposure that preceded elevations in complement products, interleukin-6, and coagulation parameters and decreases in albumin and fibrinogen. All findings in this monkey, except for antidrug antibody (ADA), reversed after cessation of dosing without progressing to adverse sequelae typically associated with ICD.


Toxicologic Pathology | 2012

Technical Guide for Nervous System Sampling of the Cynomolgus Monkey for General Toxicity Studies

Ingrid D. Pardo; Robert H. Garman; Klaus Weber; Walter F. Bobrowski; Jerry F. Hardisty; Daniel Morton

For general toxicity studies, a technique was designed to consistently sample the most important neuroanatomic regions of the brain, spinal cord, and peripheral nerve of cynomolgus monkeys using a limited number of blocks and slides. Using the most rostral portion of the pons as a landmark, the entire fixed brain was cut dorsoventrally into cross-sectional slabs 4 mm in thickness. For microscopic evaluation, six blocks of the brain at the levels of the frontal pole, anterior commissure, rostral thalamus, caudal thalamus, middle cerebellum with brainstem, and occipital lobe were trimmed to fit in standard tissue cassettes. Cross- and oblique sections of the spinal cord including the dorsal root ganglion and dorsal and ventral nerve roots were obtained at the levels of C1–C4, T10–T12, and L1–L4. Cross- and longitudinal sections of the sciatic nerve were also obtained. This technique offers a consistent and reliable method to routinely sample most of the important regions of the central and peripheral nervous system of monkeys using ten blocks. This method is readily adaptable to other species of nonhuman primates, dogs, and minipigs and can be quickly learned by the technicians performing the trimming procedures.


Toxicologic Pathology | 2014

Mechanistic Investigations of Test Article–Induced Pancreatic Toxicity at the Endocrine–Exocrine Interface in the Rat:

Karrie A. Brenneman; Shashi K. Ramaiah; Cynthia M. Rohde; Dean Messing; Shawn P. O’Neil; Lauren M. Gauthier; Zachary S. Stewart; Srinivasa R. Mantena; Kimberly M. Shevlin; Christopher Leonard; Sharon A. Sokolowski; Hungyun Lin; Deborah Carraher; Michael I. Jesson; Lindsay Tomlinson; Yutian Zhan; Walter F. Bobrowski; Steven A. Bailey; W. Mark Vogel; Dale L. Morris; Laurence O. Whiteley; John Davis

Pancreatic toxicity commonly affects the endocrine or exocrine pancreas. However, it can also occur at the endocrine–exocrine interface (EEI), where the capillary network of the islet merges with the capillaries of the surrounding acinar tissue, that is, the insulo-acinar portal system. The goal of this article is to describe a novel, test article–induced pancreatic toxicity that originated at the EEI and to summarize investigations into the mechanistic basis of the injury. This injury was initially characterized by light microscopy in 7/14 day-toxicity studies in Sprague-Dawley (Crl: CD®[SD]) rats with undisclosed test articles. Microvascular injury at the interface resulted in peri-islet serum exudation, fibrin deposition, hemorrhage, inflammation, and secondary degeneration/necrosis of surrounding exocrine tissue. More chronic injury presented as islet fibrosis and lobular atrophy. Direct cytotoxicity affecting the capillary endothelium at the EEI was confirmed ultrastructurally on day 4. Endothelial microparticle and blood flow studies further confirmed endothelial involvement. Similar lesions occurred less frequently in 2 other rat strains and not in the mouse, dog, or cynomolgus macaque. In summary, in vivo and investigative study data confirmed primary endothelial cytotoxicity in the pathogenesis of this lesion and suggested that the lesion may be rat/rat strain–specific and of uncertain relevance for human safety risk assessment.

Collaboration


Dive into the Walter F. Bobrowski's collaboration.

Researchain Logo
Decentralizing Knowledge