Walter Giordano
National University of Río Cuarto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter Giordano.
International Journal of Molecular Sciences | 2013
Pablo Bogino; Maria de Las Mercedes Oliva; Fernando Sorroche; Walter Giordano
The role of bacterial surface components in combination with bacterial functional signals in the process of biofilm formation has been increasingly studied in recent years. Plants support a diverse array of bacteria on or in their roots, transport vessels, stems, and leaves. These plant-associated bacteria have important effects on plant health and productivity. Biofilm formation on plants is associated with symbiotic and pathogenic responses, but how plants regulate such associations is unclear. Certain bacteria in biofilm matrices have been found to induce plant growth and to protect plants from phytopathogens (a process termed biocontrol), whereas others are involved in pathogenesis. In this review, we systematically describe the various components and mechanisms involved in bacterial biofilm formation and attachment to plant surfaces and the relationships of these mechanisms to bacterial activity and survival.
Fems Microbiology Letters | 2010
Luciana V. Rinaudi; Walter Giordano
Biofilms are bacterial communities enclosed within an extracellular matrix of polysaccharides produced by the bacteria, which adhere to a living or an inert macrosurface. In nature, biofilms constitute a protected growth modality allowing bacteria to survive in hostile environments. Studies of environmental isolates have revealed a highly ordered, three-dimensional organization of the extracellular matrix, which has important implications for biofilm physiology. The zone of soil immediately surrounding a plant root where complex biological and ecological processes occur, termed rhizosphere, forms an environment that fulfills the requirements for biofilm formation, including sufficient moisture and supply of nutrients, which are provided by the plant. Biofilm formation on plants appears to be associated with symbiotic and pathogenic responses, but it is unclear how plants regulate the association. Biofilms function as structures resistant against stress factors such as desiccation, UV radiation, predation, and antibiosis, which help create protective niches for rhizobia. However, the role of biofilms in rhizobial-legume symbiosis remains to be clarified. Here, the mechanisms involved in bacterial biofilm formation and attachment on plant roots, and the relation of these mechanisms to rhizobial function and survival are reviewed.
Applied and Environmental Microbiology | 2012
Fernando Sorroche; Mariana B. Spesia; Angeles Zorreguieta; Walter Giordano
ABSTRACT Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of “domesticated” laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.
Journal of Medical Microbiology | 2010
Liliana Pascual; Francisco Ruiz; Walter Giordano; Isabel Lucila Barberis
A strain of Lactobacillus, identified as Lactobacillus fermentum L23, was selected from among 100 strains isolated from vaginal swabs of healthy, non-pregnant, pre-menopausal women. L. fermentum L23 was chosen on the basis of its bacteriocinogenic ability and its properties relevant to colonization, i.e. self-aggregation, adherence to vaginal epithelial cells and co-aggregation with bacterial pathogens. The antimicrobial preventative and curative effects produced by the probiotic L. fermentum L23 administered locally against Escherichia coli in a murine vaginal tract infection model were studied. One dose of the human strain L23 containing 10(8) c.f.u. ml(-1) colonized and persisted in the vaginal tract of the female BALB/c mice for 5 days. Infection with the pathogen at 10(6) c.f.u. ml(-1) in the vaginal tract was maintained for more than 7 days. A single dose of L23 administered 24 h pre-infection inhibited E. coli growth on day 3 post-infection, showing the preventative effect displayed by this Lactobacillus strain. Treatment with L. fermentum L23 during the post-infection period showed complete inhibition of pathogen growth from day 5. Thus, this in vivo study indicated that the probiotic bacterium L. fermentum L23 produced both preventative and curative effects on E. coli growth. The beneficial properties and the production of antimicrobial metabolites may act in situ to inhibit a pathogenic micro-organism within the vaginal environment. Strain L23 could be a good natural alternative to other therapies used for genital infections.
Current Microbiology | 2008
Pablo Bogino; Erika Banchio; Carlos Bonfiglio; Walter Giordano
The success of rhizobial inoculation on plant roots is often limited by several factors, including environmental conditions, the number of infective cells applied, the presence of competing indigenous (native) rhizobia, and the inoculation method. Many approaches have been taken to solve the problem of inoculant competition by naturalized populations of compatible rhizobia present in soil, but so far without a satisfactory solution. We used antibiotic resistance and molecular profiles as tools to find a reliable and accurate method for competitiveness assay between introduced Bradyrhizobium sp. strains and indigenous rhizobia strains that nodulate peanut in Argentina. The positional advantage of rhizobia soil population for nodulation was assessed using a laboratory model in which a rhizobial population is established in sterile vermiculite. We observed an increase in nodule number per plant and nodule occupancy for strains established in vermiculite. In field experiments, only 9% of total nodules were formed by bacteria inoculated by direct coating of seed, whereas 78% of nodules were formed by bacteria inoculated in the furrow at seeding. In each case, the other nodules were formed by indigenous strains or by both strains (inoculated and indigenous). These findings indicate a positional advantage of native rhizobia or in-furrow inoculated rhizobia for nodulation in peanut.
Sensors | 2012
Fiorela Nievas; Pablo Bogino; Fernando Sorroche; Walter Giordano
Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea) root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS) is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs) are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4) and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity) in NTL4 (pZLR4). Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS). For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-dl-homoserine lactone (C6), N-(3-oxodecanoyl)-l-homoserine lactone (3OC10), N-(3-oxododecanoyl)-l-homoserine lactone (3OC12), and N-(3-oxotetradecanoyl)-l-homoserine lactone (3OC14). Biological roles of 3OC10, 3OC12, and 3OC14 AHLs were evaluated in both AHL-producing and -non-producing peanut-nodulating strains. Bacterial processes related to survival and nodulation, including motility, biofilm formation, and cell aggregation, were affected or modified by the exogenous addition of increasing concentrations of synthetic AHLs. Our results clearly demonstrate the existence of cell communication mechanisms among bradyrhizobial strains symbiotic of peanut. AHLs with long acyl chains appear to be signaling molecules regulating important QS physiological processes in these bacteria.
Current Microbiology | 2010
Fernando Sorroche; Luciana V. Rinaudi; Angeles Zorreguieta; Walter Giordano
Planktonic cells of Sinorhizobium meliloti, a Gram-negative symbiotic bacterium, display autoaggregation under static conditions. ExpR is a LuxR-type regulator that controls many functions in S. meliloti, including synthesis of two exopolysaccharides, EPS I (succinoglycan) and EPS II (galactoglucan). Since exopolysaccharides are important for bacterial attachment, we studied the involvement of EPS I and II in autoaggregation of S. meliloti. Presence of an intact copy of the expR locus was shown to be necessary for autoaggregation. A mutant incapable of producing EPS I displayed autoaggregation percentage similar to that of parental strain, whereas autoaggregation was significantly lower for a mutant defective in biosynthesis of EPS II. Our findings clearly indicate that EPS II is the essential component involved in autoaggregation of planktonic S. meliloti cells, and that EPS I plays no role in such aggregation.
Current Microbiology | 2009
Francisco Ruiz; Gisela Gerbaldo; Paula Asurmendi; Liliana Pascual; Walter Giordano; Isabel Lucila Barberis
Lactobacillus fermentum strain L23 and L. rhamnosus strain L60 were selected as an alternative treatment to prevent or treat urogenital infections based on their probiotic properties and production of bacteriocins. The objectives of the present work were to study the inhibitory activities of these two bacteriocin-producing strains, and to analyze the interactions between pairs of bacteriocins that inhibit urogenital pathogens. Antimicrobial activity tests of L23 and L60 were performed by a diffusion method with 207 bacterial strains, isolated from female patients presenting a urogenital infection. Inhibitory substances interaction tests were carried out by using a streak-diffusion method on agar plates. One hundred percent of the clinical isolates showed sensitivity to the antimicrobial substances produced by L23 and L60. The selected lactobacilli produced larger inhibition halos when compared to several antibiotics commonly used for treating these infections. Synergistic interactions and indifferent interactions were recorded in 68.6% and 31.4% of the cases, respectively. No antagonistic interactions were observed. In conclusion, the bacteriocin-producing strains L23 and L60 are potential candidates for probiotic prophylaxis and treatment of urogenital disorders in women.
Journal of Agricultural and Food Chemistry | 2010
Erika Banchio; Pablo Bogino; Maricel Valeria Santoro; Lorena Torres; Julio A. Zygadlo; Walter Giordano
Italian oregano (Origanumxmajoricum) was subjected to root system inoculation with three species of plant growth-promoting rhizobacteria (PGPRs) (Pseudomonas fluorescens, Bacillus subtilis, Azospirillum brasilense), and essential oil (EO) content and plant growth were measured. Composition of monoterpenes, a major EO component, was analyzed qualitative and quantitatively by gas chromatography. Total EO yield for plants inoculated with P. fluorescens or A. brasilense was 3.57 and 3.41 microg/mg fresh weight, respectively, approximately 2.5-fold higher than controls, without change of quantitative oil composition. The major EO compounds, cis- and trans-sabinene hydrate, gamma-terpinene, carvacrol, and thymol, showed increased biosynthesis. Carvacrol was the only terpene showing significant increase of R% in plants inoculated with A. brasilense. Plant growth parameters (shoot and root fresh and dry weights, numbers of leaves and nodes) were evaluated. Shoot fresh weight was significantly increased by all three PGPR species, but only P. fluorescens and A. brasilense increased root dry weight. These two species have clear commercial potential for economic cultivation of O.xmajoricum. Knowledge of the factors affecting yield and accumulation of monoterpenes is essential for improving production of these economically important plant compounds.
Materials | 2016
Natalia Nocelli; Pablo Bogino; Erika Banchio; Walter Giordano
Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs), and exopolysaccharides (EPSs), in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti) produces two symbiosis-promoting EPSs: succinoglycan (or EPS I) and galactoglucan (or EPS II). Studies of the S. meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly) protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II) and arsenic (As III) concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II) or As (III) stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon termed “rescuing” of the non-resistant strain.