Walter Guttmann
University of Canterbury
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter Guttmann.
ifip world computer congress wcc | 2006
Walter Guttmann; Markus Maucher
We investigate the problem of finding a total order of a finite set that satisfies various local ordering constraints. Depending on the admitted constraints, we provide an efficient algorithm or prove NP-completeness. We discuss several generalisations and systematically classify the problems.
formal methods | 2011
Walter Guttmann; Georg Struth; Tjark Weber
We implement a large Isabelle/HOL repository of algebras for application in modelling computing systems. They subsume computational logics such as dynamic and Hoare logics and form a basis for various software development methods. Isabelle has recently been extended by automated theorem provers and SMT solvers. We use these integrated tools for automatically proving several rather intricate refinement and termination theorems. We also automate a modal correspondence result and soundness and relative completeness proofs of propositional Hoare logic. These results show, for the first time, that Isabelles tool integration makes automated algebraic reasoning particularly simple. This is a step towards increasing the automation of formal methods.
The Journal of Logic and Algebraic Programming | 2010
Walter Guttmann; Bernhard Möller
Abstract We generalise the designs of the Unifying Theories of Programming (UTP) by defining them as matrices over semirings with ideals. This clarifies the algebraic structure of designs and considerably simplifies reasoning about them, for example, since they form a Kleene and omega algebra and a test semiring. We apply our framework to investigate symmetric linear recursion and its relation to tail-recursion. This substantially involves Kleene and omega algebra as well as additional algebraic formulations of determinacy, invariants, domain, pre-image, convergence and Noetherity. Due to the uncovered algebraic structure of UTP designs, all our general results also directly apply to UTP.
unifying theories of programming | 2006
Walter Guttmann; Bernhard Möller
We give an algebraic model of the designs of UTP based on a variant of modal semirings, hence generalising the original relational model. This is intended to exhibit more clearly the algebraic principles behind UTP and to provide deeper insight into the general properties of designs, the program and specification operators, and refinement. Moreover, we set up a formal connection with general and total correctness of programs as discussed by a number of authors. Finally we show that the designs form a left semiring and even a Kleene and omega algebra. This is used to calculate closed expressions for the least and greatest fixed-point semantics of the demonic while loop that are simpler than the ones obtained from standard UTP theory and previous algebraic approaches.
international andrei ershov memorial conference on perspectives of system informatics | 2006
Stefan Sarstedt; Walter Guttmann
The token flow semantics of UML 2 activity diagrams is formally defined using Abstract State Machines. Interruptible activity regions and multiplicity bounds for pins are considered for the first time in a comprehensive and rigorous way. The formalisation provides insight into problems with the UML specification, and their solutions. It also serves as a basis for an integrated environment supporting the simulation and debugging of activity diagrams.
Journal of Network and Computer Applications | 2017
Mengmeng Ge; Jin B. Hong; Walter Guttmann; Dong Seong Kim
The Internet of Things (IoT) is enabling innovative applications in various domains. Due to its heterogeneous and wide-scale structure, it introduces many new security issues. To address this problem, we propose a framework for modeling and assessing the security of the IoT and provide a formal definition of the framework. Generally, the framework consists of five phases: (1) data processing, (2) security model generation, (3) security visualization, (4) security analysis, and (5) model updates. Using the framework, we can find potential attack scenarios in the IoT, analyze the security of the IoT through well-defined security metrics, and assess the effectiveness of different defense strategies. The framework is evaluated via three scenarios, which are the smart home, wearable healthcare monitoring and environment monitoring scenarios. We use the analysis results to show the capabilities of the proposed framework for finding potential attack paths and mitigating the impact of attacks.
Science of Computer Programming | 2013
Walter Guttmann
Extended designs distinguish non-terminating and aborting executions of sequential, non-deterministic programs. We show how to treat them algebraically based on techniques we have previously applied to total and general correctness approaches. In particular, we propose modifications to the definition of an extended design which make the theory more clear and simplify calculations, and an approximation order for recursion. We derive explicit formulas for operators on extended designs including non-deterministic choice, sequential composition, while-loops and full recursion. We show how to represent extended designs as designs or prescriptions over an extended state space. The new theory generalises our previous algebraic theory of general correctness by weakening its axioms. It also integrates with partial, total and general correctness into a common foundation which gives a unified semantics of while-programs. Program transformations derived using this semantics are valid in all four correctness approaches.
RelMiCS '09/AKA '09 Proceedings of the 11th International Conference on Relational Methods in Computer Science and 6th International Conference on Applications of Kleene Algebra: Relations and Kleene Algebra in Computer Science | 2009
Walter Guttmann
General correctness offers a finer semantics of programs than partial and total correctness. We give an algebraic account continuing and extending previous approaches. In particular, we propose axioms, correctness statements, a correctness calculus, specification constructs and a loop refinement rule. The Egli-Milner order is treated algebraically and we show how to obtain least fixpoints, used to solve recursion equations, in terms of the natural order.
mathematics of program construction | 2010
Walter Guttmann
We identify weak semirings, which drop the right annihilation axiom a0 = 0, as a common foundation for partial, total and general correctness. It is known how to extend weak semirings by operations for finite and infinite iteration and domain. We use the resulting weak omega algebras with domain to define a semantics of while-programs which is valid in all three correctness approaches. The unified, algebraic semantics yields program transformations at once for partial, total and general correctness. We thus give a proof of the normal form theorem for while-programs, which is a new result for general correctness and extends to programs with non-deterministic choice. By adding specific axioms to the common ones, we obtain partial, total or general correctness as a specialisation. We continue our previous investigation of axioms for general correctness. In particular, we show that a subset of these axioms is sufficient to derive a useful theory, which includes the Egli-Milner order, full recursion, correctness statements and a correctness calculus. We also show that this subset is necessary.
international andrei ershov memorial conference on perspectives of system informatics | 2009
Jens Kohlmeyer; Walter Guttmann
We define a formal semantics of the combined use of UML 2 state machines, activities and interactions using Abstract State Machines. The behaviour of software models can henceforth be specified by composing these diagrams, choosing the most adequate formalism at each level of abstraction. We present several reasonable ways to link different kinds of diagrams and illustrate them by examples. We also give a formal semantics of communication between these diagrams. The resulting rules reveal unclear parts of the UML specification and serve as a basis for tool support.