Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter J. Storkus is active.

Publication


Featured researches published by Walter J. Storkus.


Cancer Research | 2004

Alpha-type-1 polarized dendritic cells: A novel immunization tool with optimized CTL-inducing activity

Robbie B. Mailliard; Anna Wankowicz-Kalinska; Quan Cai; Amy Wesa; Catharien M. U. Hilkens; Martien L. Kapsenberg; John M. Kirkwood; Walter J. Storkus; Pawel Kalinski

Using the principle of functional polarization of dendritic cells (DCs), we have developed a novel protocol to generate human DCs combining the three features critical for the induction of type-1 immunity: (a) fully mature status; (b) responsiveness to secondary lymphoid organ chemokines; and (c) high interleukin-12p70 (IL-12p70)-producing ability. We show that IFN-α and polyinosinic:polycytidylic acid (p-I:C) synergize with the “classical” type-1-polarizing cytokine cocktail [tumor necrosis factor α (TNFα)/IL-1β/IFNγ], allowing for serum-free generation of fully mature type-1-polarized DCs (DC1). Such “α-type-1-polarized DC(s)” (αDC1) show high migratory responses to the CCR7 ligand, 6C-kine but produce much higher levels of IL-12p70 as compared to TNFα/IL-1β/IL-6/prostaglandin E2 (PGE2)-matured DCs (sDC), the current “gold standard” in DC-based cancer vaccination. A single round of in vitro sensitization with αDC1 (versus sDCs) induces up to 40-fold higher numbers of long-lived CTLs against melanoma-associated antigens: MART-1, gp100, and tyrosinase. Serum-free generation of αDC1 allows, for the first time, the clinical application of DCs that combine the key three features important for their efficacy as anticancer vaccines.


Journal of Immunology | 2003

Dendritic Cells Mediate NK Cell Help for Th1 and CTL Responses: Two-Signal Requirement for the Induction of NK Cell Helper Function

Robbie B. Mailliard; Young Ik Son; Richard E. Redlinger; Patrick T. Coates; Adam Giermasz; Penelope A. Morel; Walter J. Storkus; Pawel Kalinski

Early stages of viral infections are associated with local recruitment and activation of dendritic cells (DC) and NK cells. Although activated DC and NK cells are known to support each other’s functions, it is less clear whether their local interaction in infected tissues can modulate the subsequent ability of migrating DC to induce T cell responses in draining lymph nodes. In this study, we report that NK cells are capable of inducing stable type 1-polarized “effector/memory” DC (DC1) that act as carriers of NK cell-derived helper signals for the development of type 1 immune responses. NK cell-induced DC1 show a strongly elevated ability to produce IL-12p70 after subsequent CD40 ligand stimulation. NK-induced DC1 prime naive CD4+ Th cells for high levels of IFN-γ, but low IL-4 production, and demonstrate a strongly enhanced ability to induce Ag-specific CD8+ T cell responses. Resting NK cells display stringent activation requirements to perform this novel, DC-mediated, “helper” function. Although their interaction with K562 cells results in effective target cell killing, the induction of DC1 requires a second NK cell-activating signal. Such costimulatory signal can be provided by type I IFNs, common mediators of antiviral responses. Therefore, in addition to their cytolytic function, NK cells also have immunoregulatory activity, induced under more stringent conditions. The currently demonstrated helper activity of NK cells may support the development of Th1- and CTL-dominated type 1 immunity against intracellular pathogens and may have implications for cancer immunotherapy.


Journal of Immunotherapy | 2002

Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy.

Ulrich Keilholz; Jeffrey S. Weber; James H. Finke; Dmitry I. Gabrilovich; W. Martin Kast; Mary L. Disis; John M. Kirkwood; Carmen Scheibenbogen; Jeff Schlom; Vernon C. Maino; H. Kim Lyerly; Peter P. Lee; Walter J. Storkus; Franceso Marincola; Alexandra Worobec; Michael B. Atkins

The Society for Biological Therapy held a Workshop last fall devoted to immune monitoring for cancer immunotherapy trials. Participants included members of the academic and pharmaceutical communities as well as the National Cancer Institute and the Food and Drug Administration. Discussion focused on the relative merits and appropriate use of various immune monitoring tools. Six breakout groups dealt with assays of T-cell function, serologic and proliferation assays to assess B cell and T helper cell activity, and enzyme-linked immunospot assay, tetramer, cytokine flow cytometry, and reverse transcription polymerase chain reaction assays of T-cell immunity. General conclusions included: (1) future vaccine studies should be designed to determine whether T-cell dysfunction (tumor-specific and nonspecific) correlated with clinical outcome; (2) tetramer-based assays yield quantitative but not functional data (3) enzyme-linked immunospot assays have the lowest limit of detection (4) cytokine flow cytometry have a higher limit of detection than enzyme-linked immunospot assay, but offer the advantages of speed and the ability to identify subsets of reactive cells; (5) antibody tests are simple and accurate and should be incorporated to a greater extent in monitoring plans; (6) proliferation assays are imprecise and should not be emphasized in future studies; (7) the reverse transcription polymerase chain reaction assay is a promising research approach that is not ready for widespread application; and (8) there is a critical need to validate these assays as surrogates for vaccine potency and clinical effect. Current data and opinion support the use of a functional assay like the enzyme-linked immunospot assay or cytokine flow cytometry in combination with a quantitative assay like tetramers for immune monitoring. At present, assays appear to be most useful as measures of vaccine potency. Careful immune monitoring in association with larger scale clinical trials ultimately may enable the correlation of monitoring results with clinical benefit.


Journal of Experimental Medicine | 2002

Disease-associated Bias in T Helper Type 1 (Th1)/Th2 CD4+ T Cell Responses Against MAGE-6 in HLA-DRB10401+ Patients With Renal Cell Carcinoma or Melanoma

Tomohide Tatsumi; Lisa Salvucci Kierstead; Elena Ranieri; Loreto Gesualdo; Francesco Paolo Schena; James H. Finke; Ronald M. Bukowski; Jan Mueller-Berghaus; John M. Kirkwood; William W. Kwok; Walter J. Storkus

T helper type 1 (Th1)-type CD4+ antitumor T cell help appears critical to the induction and maintenance of antitumor cytotoxic T lymphocyte (CTL) responses in vivo. In contrast, Th2- or Th3/Tr-type CD4+ T cell responses may subvert Th1-type cell-mediated immunity, providing a microenvironment conducive to disease progression. We have recently identified helper T cell epitopes derived from the MAGE-6 gene product; a tumor-associated antigen expressed by most melanomas and renal cell carcinomas. In this study, we have assessed whether peripheral blood CD4+ T cells from human histocompatibility leukocyte antigens (HLA)-DRβ1*0401+ patients are Th1- or Th2-biased to MAGE-6 epitopes using interferon (IFN)-γ and interleukin (IL)-5 enzyme-linked immunospot assays, respectively. Strikingly, the vast majority of patients with active disease were highly-skewed toward Th2-type responses against MAGE-6–derived epitopes, regardless of their stage (stage I versus IV) of disease, but retained Th1-type responses against Epstein-Barr virus– or influenza-derived epitopes. In marked contrast, normal donors and cancer patients with no current evidence of disease tended to exhibit either mixed Th1/Th2 or strongly Th1-polarized responses to MAGE-6 peptides, respectively. CD4+ T cell secretion of IL-10 and transforming growth factor (TGF)-β1 against MAGE-6 peptides was not observed, suggesting that specific Th3/Tr-type CD4+ subsets were not common events in these patients. Our data suggest that immunotherapeutic approaches will likely have to overcome or complement systemic Th2-dominated, tumor-reactive CD4+ T cell responses to provide optimal clinical benefit.


Journal of Immunotherapy | 1993

Identification of T-cell epitopes : rapid isolation of class I-presented peptides from viable cells by mild acid elution

Walter J. Storkus; Herbert J. Zeh; Russell D. Salter; Michael T. Lotze

A novel method was developed to isolate immunogenic peptides (CD8+ T-cell epitopes) from class I complexes expressed at the cell surface of viable cells. Cells treated at pH 3.3 with citrate-phosphate buffer for periods as short as 15 s remained viable and became phenotypically class I deficient. Qualitative loss of class I determinants was verified both serologically and by the incapacity of acid-treated cells to be lysed by class I-restricted cytolytic T lymphocytes (CTLs) in contrast to non-acid-treated controls. Flow cytometric analysis of acid-treated cells suggests that class I heavy chains remain associated with the cell membrane, while the class I light chain (beta 2-microglobulin) is absent. Since the physical dissociation of beta 2-microglobulin from class I heavy chain is correlated with the release of previously class I-bound peptides, we examined acid-eluted cell-free supernatants for the presence of immunogenic peptides. Peptides were acid eluted from an influenza A strain-infected, HLA-A2+ cell line and were subsequently fractionated by reverse-phase high performance liquid chromatography (RP-HPLC). These fractionated peptides were examined for their capacity to sensitize an HLA-A2+ B cell line to lysis mediated by an influenza A matrix peptide- (Flu M1 57-68) specific, HLA-A2-restricted CTL line. A single peak of biologic activity was identified in HPLC fractions 47 and 48 derived from influenza-infected cells. These fractions contained a peptide of M(r) 968 with a sequence similar to the Flu M1 58-66 sequence GILGFVFTL. The application of this technique to other T-cell-based systems may aid in the definition of peptide epitopes relevant to viral, autoimmune, or neoplastic disorders.


Journal of Immunology | 2009

Tumor-Derived Microvesicles Promote Regulatory T Cell Expansion and Induce Apoptosis in Tumor-Reactive Activated CD8+ T Lymphocytes

Eva Wieckowski; Carmen Visus; Marta Szajnik; Miroslaw J. Szczepanski; Walter J. Storkus; Theresa L. Whiteside

Sera of patients with cancer contain membraneous microvesicles (MV) able to induce apoptosis of activated T cells by activating the Fas/Fas ligand pathway. However, the cellular origin of MV found in cancer patients’ sera varies as do their molecular and cellular profiles. To distinguish tumor-derived MV in cancer patients’ sera, we used MAGE 3/6+ present in tumors and MV. Molecular profiles of MAGE 3/6+ MV were compared in Western blots or by flow cytometry with those of MV secreted by dendritic cells or activated T cells. These profiles were found to be distinct for each cell type. Only tumor-derived MV were MAGE 3/6+ and were variably enriched in 42-kDa Fas ligand and MHC class I but not class II molecules. Effects of MV on signaling via the TCR and IL-2R and proliferation or apoptosis of activated primary T cells and T cell subsets were also assessed. Functions of activated CD8+ and CD4+ T lymphocytes were differentially modulated by tumor-derived MV. These MV inhibited signaling and proliferation of activated CD8+ but not CD4+ T cells and induced apoptosis of CD8+ T cells, including tumor-reactive, tetramer+CD8+ T cells as detected by flow cytometry for caspase activation and annexin V binding or by DNA fragmentation. Tumor-derived but not dendritic cell-derived MV induced the in vitro expansion of CD4+CD25+FOXP3+ T regulatory cells and enhanced their suppressor activity. The data suggest that tumor-derived MV induce immune suppression by promoting T regulatory cell expansion and the demise of antitumor CD8+ effector T cells, thus contributing to tumor escape.


Laboratory Investigation | 2003

Immunopolarization of CD4 + and CD8 + T Cells to Type-1–Like is Associated with Melanocyte Loss in Human Vitiligo

Anna Wankowicz-Kalinska; Rene M. van den Wijngaard; Bert J. Tigges; Wiete Westerhof; Graham S. Ogg; Vincenzo Cerundolo; Walter J. Storkus; Pranab K. Das

Vitiligo is an autoimmune condition characterized by loss of epidermal melanocytes. High frequencies of melanocyte-reactive cytotoxic T cells in the peripheral blood of vitiligo patients and the observed correlation between perilesional T-cell infiltration and melanocyte loss in situ suggest the important role of cellular autoimmunity in the pathogenesis of this disease. We isolated T cells from both perilesional and nonlesional skin biopsies obtained from five vitiligo patients, then cloned and analyzed their profile of cytokine production after short-term, nonspecific expansion in vitro. Perilesional T-cell clones (TCC) derived from patients with vitiligo exhibited a predominant Type-1–like cytokine secretion profile, whereas the degree of Type-1 polarization in uninvolved skin-derived TCC correlated with the process of microscopically observed melanocyte destruction in situ. Detailed analysis of broad spectrum of cytokines produced by perilesional- and nonlesional-derived CD4+ and CD8+ TCC confirmed polarization toward Type-1–like in both CD4 and CD8 compartments, which paralleled depigmentation process observed locally in the skin. Furthermore, CD8+ TCC derived from two patients also were analyzed for reactivity against autologous melanocytes. The antimelanocyte cytotoxic reactivity was observed among CD8+ TCC isolated from perilesional biopsies of two patients with vitiligo. Finally, in two of five patients, tetramer analysis revealed presence of high frequencies of Mart-1–specific CD8 T cells in T-cell lines derived from perilesional skin. Altogether our data support the role of cellular mechanisms playing a significant part in the destruction of melanocytes in human autoimmune vitiligo.


Stem Cells | 1997

Bone Marrow‐Derived Dendritic Cells Serve as Potent Adjuvants for Peptide‐Based Antitumor Vaccines

Jose I. Mayordomo; Tatiana D. Zorina; Walter J. Storkus; Laurence Zitvogel; María Dolores García-Prats; Albert B. DeLeo; Michael T. Lotze

Dendritic cells (DCs) are considered the most effective antigen‐presenting cells (APCs) for primary immune responses. Since presentation of antigens to the immune system by appropriate professional APCs is critical to elicit a strong immune reaction and DCs seem to be quantitatively and functionally defective in the tumor host, DCs hold great promise to improve cancer vaccines. Even though they are found in lymphoid organs, skin and mucosa, the difficulty of generating large numbers of DCs has been a major limitation for their use in vaccine studies. A simple method for obtaining DCs from mouse bone marrow cells cultured in the presence of GM‐CSF + interleukin 4 is now available. In four different tumor models, mice injected with DCs grown in GM‐CSF plus interleukin 4 and prepulsed with a cytotoxic T lymphocyte‐recognized tumor peptide epitope developed a specific cytotoxic T lymphocyte response and were protected against a subsequent tumor challenge with tumor cells expressing the relevant tumor antigen. Moreover, treatment of day 5‐14 tumors with peptide‐pulsed DCs resulted in sustained tumor regression in five different tumor models. These results suggest that presentation of tumor antigens to the immune system by professional APCs is a promising method to circumvent tumor‐mediated immunosuppression and is the basis for ongoing clinical trials of cancer immunotherapy with tumor peptide‐pulsed DCs.


Journal of Translational Medicine | 2007

Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models

Xinmei Zhu; Fumihiko Nishimura; Kotaro Sasaki; Mitsugu Fujita; Jill E. Dusak; Junichi Eguchi; Wendy Fellows-Mayle; Walter J. Storkus; Paul R. Walker; Andres M. Salazar; Hideho Okada

BackgroundToll-like receptor (TLR)3 ligands serve as natural inducers of pro-inflammatory cytokines capable of promoting Type-1 adaptive immunity, and TLR3 is abundantly expressed by cells within the central nervous system (CNS). To improve the efficacy of vaccine strategies directed against CNS tumors, we evaluated whether administration of a TLR3 ligand, polyinosinic-polycytidylic (poly-IC) stabilized with poly-lysine and carboxymethylcellulose (poly-ICLC) would enhance the anti-CNS tumor effectiveness of tumor peptide-based vaccinations.MethodsC57BL/6 mice bearing syngeneic CNS GL261 glioma or M05 melanoma received subcutaneous (s.c.) vaccinations with synthetic peptides encoding CTL epitopes- mEphA2 (671–679), hgp100 (25–33) and mTRP-2 (180–188) for GL261, or ovalbumin (OVA: 257–264) for M05. The mice also received intramuscular (i.m.) injections with poly-ICLC.ResultsThe combination of subcutaneous (s.c.) peptide-based vaccination and i.m. poly-ICLC administration promoted systemic induction of antigen (Ag)-specific Type-1 CTLs expressing very late activation antigen (VLA)-4, which confers efficient CNS-tumor homing of vaccine-induced CTLs based on experiments with monoclonal antibody (mAb)-mediated blockade of VLA-4. In addition, the combination treatment allowed expression of IFN-γ by CNS tumor-infiltrating CTLs, and improved the survival of tumor bearing mice in the absence of detectable autoimmunity.ConclusionThese data suggest that poly-ICLC, which has been previously evaluated in clinical trials, can be effectively combined with tumor Ag-specific vaccine strategies, thereby providing a greater index of therapeutic efficacy.


Journal of Experimental Medicine | 2002

Complementary Dendritic Cell–activating Function of CD8+ and CD4+ T Cells Helper Role of CD8+ T Cells in the Development of T Helper Type 1 Responses

Robbie B. Mailliard; Shinichi Egawa; Quan Cai; Anna Kalinska; Svetlana N. Bykovskaya; Michael T. Lotze; Martien L. Kapsenberg; Walter J. Storkus; Pawel Kalinski

Dendritic cells (DCs) activated by CD40L-expressing CD4+ T cells act as mediators of “T helper (Th)” signals for CD8+ T lymphocytes, inducing their cytotoxic function and supporting their long-term activity. Here, we show that the optimal activation of DCs, their ability to produce high levels of bioactive interleukin (IL)-12p70 and to induce Th1-type CD4+ T cells, is supported by the complementary DC-activating signals from both CD4+ and CD8+ T cells. Cord blood– or peripheral blood–isolated naive CD8+ T cells do not express CD40L, but, in contrast to naive CD4+ T cells, they are efficient producers of IFN-γ at the earliest stages of the interaction with DCs. Naive CD8+ T cells cooperate with CD40L-expressing naive CD4+ T cells in the induction of IL-12p70 in DCs, promoting the development of primary Th1-type CD4+ T cell responses. Moreover, the recognition of major histocompatibility complex class I–presented epitopes by antigen-specific CD8+ T cells results in the TNF-α– and IFN-γ–dependent increase in the activation level of DCs and in the induction of type-1 polarized mature DCs capable of producing high levels of IL-12p70 upon a subsequent CD40 ligation. The ability of class I–restricted CD8+ T cells to coactivate and polarize DCs may support the induction of Th1-type responses against class I–presented epitopes of intracellular pathogens and contact allergens, and may have therapeutical implications in cancer and chronic infections.

Collaboration


Dive into the Walter J. Storkus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideho Okada

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Robbins

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Amy Wesa

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

James H. Finke

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pawel Kalinski

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge