Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter Karlen is active.

Publication


Featured researches published by Walter Karlen.


IEEE Transactions on Biomedical Engineering | 2013

Multiparameter Respiratory Rate Estimation From the Photoplethysmogram

Walter Karlen; Srinivas Raman; John Mark Ansermino; Guy A. Dumont

We present a novel method for estimating respiratory rate in real time from the photoplethysmogram (PPG) obtained from pulse oximetry. Three respiratory-induced variations (frequency, intensity, and amplitude) are extracted from the PPG using the Incremental-Merge Segmentation algorithm. Frequency content of each respiratory-induced variation is analyzed using fast Fourier transforms. The proposed Smart Fusion method then combines the results of the three respiratory-induced variations using a transparent mean calculation. It automatically eliminates estimations considered to be unreliable because of detected presence of artifacts in the PPG or disagreement between the different individual respiratory rate estimations. The algorithm has been tested on data obtained from 29 children and 13 adults. Results show that it is important to combine the three respiratory-induced variations for robust estimation of respiratory rate. The Smart Fusion showed trends of improved estimation (mean root mean square error 3.0 breaths/min) compared to the individual estimation methods (5.8, 6.2, and 3.9 breaths/min). The Smart Fusion algorithm is being implemented in a mobile phone pulse oximeter device to facilitate the diagnosis of severe childhood pneumonia in remote areas.


IEEE Transactions on Biomedical Circuits and Systems | 2009

Sleep and Wake Classification With ECG and Respiratory Effort Signals

Walter Karlen; Claudio Mattiussi; Dario Floreano

We describe a method for the online classification of sleep/wake states based on cardiorespiratory signals produced by wearable sensors. The method was conceived in view of its applicability to a wearable sleepiness monitoring device. The method uses a fast Fourier transform as the main feature extraction tool and a feedforward artificial neural network as a classifier. We show that when the method is applied to data collected from a single young male adult, the system can correctly classify, on average, 95.4% of unseen data from the same user. When the method is applied to classify data from multiple users with the same age and gender, its accuracy is reduced to 85.3%. However, receiver operating characteristic analysis shows that compared to actigraphy, the proposed method produces a more balanced correct classification of sleep and wake periods. Additionally, by adjusting the classification threshold of the neural classifier, 86.7% of correct classification is obtained.


Physiological Measurement | 2012

Photoplethysmogram signal quality estimation using repeated Gaussian filters and cross-correlation

Walter Karlen; K Kobayashi; John Mark Ansermino; Guy A. Dumont

Pulse oximeters are monitors that noninvasively measure heart rate and blood oxygen saturation (SpO2). Unfortunately, pulse oximetry is prone to artifacts which negatively impact the accuracy of the measurement and can cause a significant number of false alarms. We have developed an algorithm to segment pulse oximetry signals into pulses and estimate the signal quality in real time. The algorithm iteratively calculates a signal quality index (SQI) ranging from 0 to 100. In the presence of artifacts and irregular signal morphology, the algorithm outputs a low SQI number. The pulse segmentation algorithm uses the derivative of the signal to find pulse slopes and an adaptive set of repeated Gaussian filters to select the correct slopes. Cross-correlation of consecutive pulse segments is used to estimate signal quality. Experimental results using two different benchmark data sets showed a good pulse detection rate with a sensitivity of 96.21% and a positive predictive value of 99.22%, which was equivalent to the available reference algorithm. The novel SQI algorithm was effective and produced significantly lower SQI values in the presence of artifacts compared to SQI values during clean signals. The SQI algorithm may help to guide untrained pulse oximeter users and also help in the design of advanced algorithms for generating smart alarms.


PLOS ONE | 2014

Estimating respiratory and heart rates from the correntropy spectral density of the photoplethysmogram.

Ainara Garde; Walter Karlen; J. Mark Ansermino; Guy A. Dumont

The photoplethysmogram (PPG) obtained from pulse oximetry measures local variations of blood volume in tissues, reflecting the peripheral pulse modulated by heart activity, respiration and other physiological effects. We propose an algorithm based on the correntropy spectral density (CSD) as a novel way to estimate respiratory rate (RR) and heart rate (HR) from the PPG. Time-varying CSD, a technique particularly well-suited for modulated signal patterns, is applied to the PPG. The respiratory and cardiac frequency peaks detected at extended respiratory (8 to 60 breaths/min) and cardiac (30 to 180 beats/min) frequency bands provide RR and HR estimations. The CSD-based algorithm was tested against the Capnobase benchmark dataset, a dataset from 42 subjects containing PPG and capnometric signals and expert labeled reference RR and HR. The RR and HR estimation accuracy was assessed using the unnormalized root mean square (RMS) error. We investigated two window sizes (60 and 120 s) on the Capnobase calibration dataset to explore the time resolution of the CSD-based algorithm. A longer window decreases the RR error, for 120-s windows, the median RMS error (quartiles) obtained for RR was 0.95 (0.27, 6.20) breaths/min and for HR was 0.76 (0.34, 1.45) beats/min. Our experiments show that in addition to a high degree of accuracy and robustness, the CSD facilitates simultaneous and efficient estimation of RR and HR. Providing RR every minute, expands the functionality of pulse oximeters and provides additional diagnostic power to this non-invasive monitoring tool.


PLOS ONE | 2014

Development of a Screening Tool for Sleep Disordered Breathing in Children Using the Phone Oximeter

Ainara Garde; Parastoo Dehkordi; Walter Karlen; David Wensley; J. Mark Ansermino; Guy A. Dumont

Background Sleep disordered breathing (SDB) can lead to daytime sleepiness, growth failure and developmental delay in children. Polysomnography (PSG), the gold standard to diagnose SDB, is a highly resource-intensive test, confined to the sleep laboratory. Aim To combine the blood oxygen saturation (SpO2) characterization and cardiac modulation, quantified by pulse rate variability (PRV), to identify children with SDB using the Phone Oximeter, a device integrating a pulse oximeter with a smartphone. Methods Following ethics approval and informed consent, 160 children referred to British Columbia Childrens Hospital for overnight PSG were recruited. A second pulse oximeter sensor applied to the finger adjacent to the one used for standard PSG was attached to the Phone Oximeter to record overnight pulse oximetry (SpO2 and photoplethysmogram (PPG)) alongside the PSG. Results We studied 146 children through the analysis of the SpO2 pattern, and PRV as an estimate of heart rate variability calculated from the PPG. SpO2 variability and SpO2 spectral power at low frequency, was significantly higher in children with SDB due to the modulation provoked by airway obstruction during sleep (p-value ). PRV analysis reflected a significant augmentation of sympathetic activity provoked by intermittent hypoxia in SDB children. A linear classifier was trained with the most discriminating features to identify children with SDB. The classifier was validated with internal and external cross-validation, providing a high negative predictive value (92.6%) and a good balance between sensitivity (88.4%) and specificity (83.6%). Combining SpO2 and PRV analysis improved the classification performance, providing an area under the receiver operating characteristic curve of 88%, beyond the 82% achieved using SpO2 analysis alone. Conclusions These results demonstrate that the implementation of this algorithm in the Phone Oximeter will provide an improved portable, at-home screening tool, with the capability of monitoring patients over multiple nights.


Anaesthesia | 2012

Usability testing of a prototype Phone Oximeter with healthcare providers in high‐ and low‐medical resource environments*

Jacqueline Hudson; S.M. Nguku; Jules Sleiman; Walter Karlen; Guy A. Dumont; Chris Petersen; C.B. Warriner; John Mark Ansermino

To increase the use of pulse oximetry by capitalise on the wide availability of mobile phones, we have designed, developed and evaluated a prototype pulse oximeter interfaced to a mobile phone. Usability of this Phone Oximeter was tested as part of a rapid prototyping process. Phase 1 of the study (20 subjects) was performed in Canada. Users performed 23 tasks, while thinking aloud. Time for completion of tasks and analysis of user response to a mobile phone usability questionnaire were used to evaluate usability. Five interface improvements were made to the prototype before evaluation in Phase 2 (15 subjects) in Uganda. The lack of previous pulse oximetry experience and mobile phone use increased median (IQR [range]) time taken to perform tasks from 219 (160–247 [118–274]) s in Phase 1 to 228 (151–501 [111–2661]) s in Phase 2. User feedback was positive and overall usability high (Phase 1 – 82%, Phase 2 – 78%).


Anesthesia & Analgesia | 2012

Usability testing of a prototype Phone Oximeter with healthcare providers in high- and low-medical resource environments

Jacqueline Hudson; S.M. Nguku; Jules Sleiman; Walter Karlen; Guy A. Dumont; Chris Petersen; C.B. Warriner; J. Mark Ansermino

To increase the use of pulse oximetry by capitalise on the wide availability of mobile phones, we have designed, developed and evaluated a prototype pulse oximeter interfaced to a mobile phone. Usability of this Phone Oximeter was tested as part of a rapid prototyping process. Phase 1 of the study (20 subjects) was performed in Canada. Users performed 23 tasks, while thinking aloud. Time for completion of tasks and analysis of user response to a mobile phone usability questionnaire were used to evaluate usability. Five interface improvements were made to the prototype before evaluation in Phase 2 (15 subjects) in Uganda. The lack of previous pulse oximetry experience and mobile phone use increased median (IQR [range]) time taken to perform tasks from 219 (160–247 [118–274]) s in Phase 1 to 228 (151–501 [111–2661]) s in Phase 2. User feedback was positive and overall usability high (Phase 1 – 82%, Phase 2 – 78%).


international conference of the ieee engineering in medicine and biology society | 2012

Design challenges for camera oximetry on a mobile phone

Walter Karlen; Joanne Lim; J. Mark Ansermino; Guy A. Dumont; Cornie Scheffer

The use of mobile consumer devices as medical diagnostic tools allows standard medical tests to be performed anywhere. Cameras embedded in consumer devices have previously been used as pulse oximetry sensors. However, technical limitations and implementation challenges have not been described. This manuscript provides a critical analysis of pulse oximeter technology and technical limitations of cameras that can potentially impact implementation of pulse oximetry in mobile phones. Theoretical and practical examples illustrate difficulties and recommendations to overcome these challenges.


Anesthesia & Analgesia | 2011

Capillary refill time: is it still a useful clinical sign?

Amelia Pickard; Walter Karlen; J. Mark Ansermino

Capillary refill time (CRT) is widely used by health care workers as part of the rapid, structured cardiopulmonary assessment of critically ill patients. Measurement involves the visual inspection of blood returning to distal capillaries after they have been emptied by pressure. It is hypothesized that CRT is a simple measure of alterations in peripheral perfusion. Evidence for the use of CRT in anesthesia is lacking and further research is required, but understanding may be gained from evidence in other fields. In this report, we examine this evidence and factors affecting CRT measurement. Novel approaches to the assessment of CRT are under investigation. In the future, CRT measurement may be achieved using new technologies such as digital videography or modified oxygen saturation probes; these new methods would remove the limitations associated with clinical CRT measurement and may even be able to provide an automated CRT measurement.


international conference of the ieee engineering in medicine and biology society | 2008

Improving actigraph sleep/wake classification with cardio-respiratory signals

Walter Karlen; Claudio Mattiussi; Dario Floreano

Actigraphy for long-term sleep/wake monitoring fails to correctly classify situations where the subject displays low activity, but is awake. In this paper we propose a new algorithm which uses both accelerometer and cardio-respiratory signals to overcome this restriction. Acceleration, electrocardiogram and respiratory effort were measured with an integrated wearable recording system worn on the chest by three healthy male subjects during normal daily activities. For signal processing a Fast Fourier Transformation and as classifier a feed-forward Artificial Neural Network was used. The best classifier achieved an accuracy of 96.14%, a sensitivity of 94.65% and a specificity of 98.19%. The algorithm is suitable for integration into a wearable device for long-term home monitoring.

Collaboration


Dive into the Walter Karlen's collaboration.

Top Co-Authors

Avatar

Guy A. Dumont

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

J. Mark Ansermino

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ainara Garde

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Parastoo Dehkordi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Dario Floreano

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Chris Petersen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Joanne Lim

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Dustin Dunsmuir

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

John Mark Ansermino

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge