Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter Köckenberger is active.

Publication


Featured researches published by Walter Köckenberger.


Plant Physiology | 2002

Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato.

Alok Krishna Sinha; Markus Hofmann; Ulrike Römer; Walter Köckenberger; Lothar Elling; Thomas Roitsch

To gain insight into the regulatory mechanisms of sugar signaling in plants, the effect of derivatives of the transport sugar sucrose (Suc), the Suc isomers palatinose and turanose, and the Suc analog fluoro-Suc were tested. Photo-autotrophic suspension culture cells of tomato (Lycopersicon peruvianum) were used to study their effect on the regulation of marker genes of source and sink metabolism, photosynthesis, and the activation of mitogen-activated protein kinases (MAPKs). Suc and glucose (Glc) resulted in reverse regulation of source and sink metabolism. Whereas the mRNA level of extracellular invertase (Lin6) was induced, the transcript level of small subunit of ribulose bisphosphate carboxylase (RbcS) was repressed. In contrast, turanose, palatinose, and fluoro-Suc only rapidly induced Lin6 mRNA level, whereas the transcript level of RbcS was not affected. The differential effect of the metabolizable and non-metabolizable sugars on RbcS mRNA regulation was reflected by the fact that only Suc and Glc inhibited photosynthesis and chlorophyll fluorescence. The activation of different signal transduction pathways by sugars was further supported by the analysis of the activation of MAPKs. MAPK activity was found to be strongly activated by turanose, palatinose, and fluoro-Suc, but not by Suc and Glc. To analyze the role of sugars in relation to pathogen perception, an elicitor preparation of Fusarium oxysporum lycopersici was used. The strong activation of MAPKs and the fast and transient induction of Lin6 expresssion by the fungal elicitor resembles the effect of turanose, palatinose, and fluoro-Suc and indicates that non-metabolizable sugars are sensed as stress-related stimuli.


European Physical Journal D | 2015

Training Schrödinger’s cat: quantum optimal control

Steffen J. Glaser; Ugo Boscain; Tommaso Calarco; Christiane P. Koch; Walter Köckenberger; Ronnie Kosloff; Ilya Kuprov; Burkhard Luy; Sophie G. Schirmer; Thomas Schulte-Herbrüggen; Dominique Sugny; Frank K. Wilhelm

It is control that turns scientific knowledge into useful technology: in physics and engineering it provides a systematic way for driving a dynamical system from a given initial state into a desired target state with minimized expenditure of energy and resources. As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantum-enhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantum simulation. In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems. We address key challenges and sketch a roadmap for future developments.


Trends in Plant Science | 2001

Functional imaging of plants by magnetic resonance experiments

Walter Köckenberger

Microimaging based on magnetic resonance is an experimental technique that can provide a unique view of a variety of plant physiological processes. Particularly interesting applications include investigations of water movement and spatially resolved studies of the transport and accumulation of labelled molecules in intact plant tissue. Some of the fundamental principles of nuclear and electron magnetic resonance microimaging are explained here and the potential of these techniques is shown using several representative examples.


Journal of Microscopy | 2004

High resolution NMR microscopy of plants and fungi

Walter Köckenberger; C. De Panfilis; D. Santoro; P. Dahiya; Stephen Rawsthorne

Nuclear magnetic resonance (NMR) microscopy is a completely noninvasive technique that can be used to acquire images with high spatial resolution through opaque objects such as plant organs and tissue parts. The image contrast can be chosen to represent the anatomical details or to visualize the spatial distribution of a range of physico‐chemical parameters such as the apparent diffusion constant of water or the velocity of water flow within plants in vivo. In addition, images can be generated which show the spatial distribution of metabolites. Furthermore, it is possible to detect chemical compounds labelled with the stable isotope 13C and to generate images showing the spatial distribution of the 13C label in the intact plant. The ability to monitor water flow and transport of 13C‐labelled tracer in intact plants with NMR microscopy favours the use of this technique in the investigation of long‐distance transport processes in plants. A short introduction into the technical principles of NMR microscopy is provided and the problems associated with applications to plants are summarized. The potential of the technique is explained with applications to Zinnia elegans plants, wheat grains and Brassica napus siliques.


Plant Physiology | 2008

The Transport of Sugars to Developing Embryos Is Not via the Bulk Endosperm in Oilseed Rape Seeds

Edward R. Morley-Smith; Marilyn J. Pike; Kim Findlay; Walter Köckenberger; Lionel Hill; Alison M. Smith; Stephen Rawsthorne

The fate of sucrose (Suc) supplied via the phloem to developing oilseed rape (Brassica napus) seeds has been investigated by supplying [14C]Suc to pedicels of detached, developing siliques. The method gives high, sustained rates of lipid synthesis in developing embryos within the silique comparable with those on the intact plant. At very early developmental stages (3 d after anthesis), the liquid fraction that occupies most of the interior of the seed has a very high hexose-to-Suc ratio and [14C]Suc entering the seeds is rapidly converted to hexoses. Between 3 and 12 d after anthesis, the hexose-to-Suc ratio of the liquid fraction of the seed remains high, but the fraction of [14C]Suc converted to hexose falls dramatically. Instead, most of the [14C]Suc entering the seed is rapidly converted to products in the growing embryo. These data, together with light and nuclear magnetic resonance microscopy, reveal complex compartmentation of sugar metabolism and transport within the seed during development. The bulk of the sugar in the liquid fraction of the seed is probably contained within the central vacuole of the endosperm. This sugar is not in contact with the embryo and is not on the path taken by carbon from the phloem to the embryo. These findings have important implications for the sugar switch model of embryo development and for understanding the relationship between the embryo and the surrounding endosperm.


Journal of Controlled Release | 2003

Investigating the coating dependent release mechanism of a pulsatile capsule using NMR microscopy

Jonathan C.D Sutch; Alistair C. Ross; Walter Köckenberger; Richard Bowtell; Ross James Macrae; Howard N.E. Stevens; Colin D. Melia

Chronopharmaceutical capsules, ethylcellulose-coated to prevent water ingress, exhibited clearly different release characteristics when coated by organic or aqueous processes. Organic-coated capsules produced a delayed pulse release, whereas aqueous-coated capsules exhibited less delayed and more erratic release behaviour. Nuclear magnetic resonance microscopy was used to elucidate the internal mechanisms underlying this behaviour by studying the routes of internal water transport and the timescale and sequence of events leading to the pulse. Images showed that the seal between the shell and the tablet plug is a key route of water penetration in these dosage forms. There is evidence for a more efficient seal in the organic-coated capsule, and although some hydration of the contents was evident, erosion of the tablet plug is most probably the controlling factor in timed release. The premature failure of the aqueous-coated capsule appears to be a result of rapid influx of water between plug and capsule with hydration of the low substituted hydroxypropylcellulose expulsion agent. As a result of this, the tablet plug remains intact, but appears unable to be ejected. The resulting significant pressure build-up causes premature release by distortion and splitting of the capsule shell. These events may be aided by a weakening of the aqueous-coated gelatin shell by hydration from the inside, and at the mouth of the capsule where previous electron microscope studies have shown incomplete coating of the inside by the aqueous process.


Physical Chemistry Chemical Physics | 2010

Slice-selective single scan proton COSY with dynamic nuclear polarisation

Rafal Panek; Josef Granwehr; James Leggett; Walter Köckenberger

Short acquisition time and single scan capability of gradient-assisted ultrafast multidimensional spectroscopy makes it possible to record 2D spectra of highly polarised spin systems in the liquid state using dynamic nuclear polarization (DNP) in conjunction with fast dissolution. We present a slice selective experiment, suitable for back-to-back acquisition of two independent single-scan 2D experiments from different sample volumes. This scheme maximizes the amount of information obtainable from a sample that is prepolarised with a non-repeatable DNP technique. It is particularly suitable for samples with the short longitudinal relaxation times common to proton NMR spectroscopy. This technique is demonstrated by applying two filtered proton 2D COSY experiments on a DNP-polarised mixture of glutamine and glutamate to selectively amplify the correlation pattern of the protons connected to the beta and gamma carbons of either one of the two amino acids. Particular emphasis was put on the reproducibility of the experiments, especially the polarisation enhancement. Data for the liquid-state proton enhancement from amino acids and small proteins was assembled in a map that allowed the prediction of signal levels in liquid-state NMR experiments employing dissolution DNP.


Biomedical Materials | 2008

Image-based characterization of foamed polymeric tissue scaffolds

Melissa L. Mather; Stephen P. Morgan; Lisa J. White; Hongyun Tai; Walter Köckenberger; Steven M. Howdle; Kevin M. Shakesheff; John A. Crowe

Tissue scaffolds are integral to many regenerative medicine therapies, providing suitable environments for tissue regeneration. In order to assess their suitability, methods to routinely and reproducibly characterize scaffolds are needed. Scaffold structures are typically complex, and thus their characterization is far from trivial. The work presented in this paper is centred on the application of the principles of scaffold characterization outlined in guidelines developed by ASTM International. Specifically, this work demonstrates the capabilities of different imaging modalities and analysis techniques used to characterize scaffolds fabricated from poly(lactic-co-glycolic acid) using supercritical carbon dioxide. Three structurally different scaffolds were used. The scaffolds were imaged using: scanning electron microscopy, micro x-ray computed tomography, magnetic resonance imaging and terahertz pulsed imaging. In each case two-dimensional images were obtained from which scaffold properties were determined using image processing. The findings of this work highlight how the chosen imaging modality and image-processing technique can influence the results of scaffold characterization. It is concluded that in order to obtain useful results from image-based scaffold characterization, an imaging methodology providing sufficient contrast and resolution must be used along with robust image segmentation methods to allow intercomparison of results.


Journal of Chemical Physics | 2011

On the accuracy of the state space restriction approximation for spin dynamics simulations

Alexander Karabanov; Ilya Kuprov; G.T.P. Charnock; Anniek van der Drift; Luke J. Edwards; Walter Köckenberger

We present an algebraic foundation for the state space restriction approximation in spin dynamics simulations and derive applicability criteria as well as minimal basis set requirements for practically encountered simulation tasks. The results are illustrated with nuclear magnetic resonance (NMR), electron spin resonance (ESR), dynamic nuclear polarization (DNP), and spin chemistry simulations. It is demonstrated that state space restriction yields accurate results in systems where the time scale of spin relaxation processes approximately matches the time scale of the experiment. Rigorous error bounds and basis set requirements are derived.


Journal of Anatomy | 2007

Craniofacial growth in fetal Tarsius bancanus: brains, eyes and nasal septa

Nathan Jeffery; Karen Davies; Walter Köckenberger; Steve R. Williams

The tarsier skull has been of particular interest in studies of primate taxonomy and functional morphology for several decades. Despite this, there remains no comprehensive data on how the tarsier skull develops, especially in relation to the soft‐tissues of the head. Here we have documented for the first time fetal development of the skull and brain as well as the nasal septum and eyes in T. bancanus. We have also tested for the possible influence of these tissues in shaping skull architecture. Nineteen post‐mortem specimens were imaged using high‐resolution magnetic resonance imaging and magnetic resonance microscopy. Landmarks and volume data were collected and analysed. Findings demonstrated massive increases of brain size and eye size as well as flattening of the midline cranial base, facial projection and orbital margin frontation. Little evidence was found to support the notion that growth of the brain or nasal septum physically drives the observed changes of the skull. However, increases in the size of the eyes relative to skull size were associated with orbital margin frontation. With the possible exception of the results for eye size, the findings indicate that rather than forcing change the soft‐tissues form a framework that physically constrains the morphogenetic template of the skeletal elements. This suggests, for example, that the degree of cranial base angulation seen in adulthood is not directly determined by brain expansion bending the basicranium, but by brain enlargement limiting the extent of cranial base flattening (retroflexion) in the fetus.

Collaboration


Dive into the Walter Köckenberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Granwehr

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Leggett

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafal Panek

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

A.J. Horsewill

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge