Walter M. Jaklitsch
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter M. Jaklitsch.
Studies in Mycology | 2009
Walter M. Jaklitsch
At present 75 species of Hypocrea have been identified in temperate Europe. Nineteen green-spored species and their Trichoderma asexual states are here described in detail. Extensive searches for Hypocrea teleomorphs in 14 European countries, with emphasis on Central Europe, yielded more than 620 specimens within five years. The morphology of fresh and dry stromata was studied. In addition, available types of species described from Europe were examined. Cultures were prepared from ascospores and used to study the morphology of cultures and anamorphs, to determine growth rates, and to extract DNA that was used for amplification and sequencing of three genetic markers. ITS was used for identification, while RNA polymerase II subunit b (rpb2) and translation elongation factor 1 alpha (tef1) were analyzed for phylogenetic reconstruction of the genus. Several unexpected findings resulted from this project: 1) The previous view that only a small number of Trichoderma species form a teleomorph is erroneous. 2) All expectations concerning the number of species in Europe are by far exceeded. Seventy-five species of Hypocrea, two species of Protocrea, and Arachnocrea stipata, are herein identified in temperate Europe, based on the ITS identification routine using fresh material, on species described earlier without molecular data and on species recently described but not collected during this project. 3) Current data suggest that the biodiversity of Hypocrea / Trichoderma above soil exceeds the number of species isolated from soil. 4) The number of Trichoderma species forming hyaline conidia has been considered a small fraction. In Europe, 26 species of those forming teleomorphs produce hyaline conidia, while 42 green-conidial species are known. Three of the detected Hypocrea species do not form an anamorph in culture, while the anamorph is unknown in four species, because they have never been cultured. This work is a preliminary account of Hypocrea and their Trichoderma anamorphs in Europe. Of the hyaline-spored species, H. minutispora is by far the most common species in Europe, while of the green-spored species this is H. strictipilosa. General ecology of Hypocrea is discussed. Specific associations, either with host fungi or trees have been found, but the majority of species seems to be necrotrophic on diverse fungi on wood and bark. The taxonomy of the genus will be treated in two parts. In this first part 19 species of Hypocrea with green ascospores, including six new teleomorph and five new anamorph species, are described in detail. All green-spored species belong to previously recognised clades, except H. spinulosa, which forms the new Spinulosa Clade with two additional new species, and H. fomiticola, which belongs to the Semiorbis Clade and forms effuse to large subpulvinate stromata on Fomes fomentarius, a trait new for species with green ascospores. Anamorph names are established prospectively in order to provide a basis for possible policy alterations towards their use for holomorphs.
Fungal Diversity | 2014
Nalin N. Wijayawardene; Pedro W. Crous; Paul M. Kirk; David L. Hawksworth; Saranyaphat Boonmee; Uwe Braun; Dong Qin Dai; Melvina J. D’souza; Paul Diederich; Asha J. Dissanayake; Mingkhuan Doilom; Singang Hongsanan; E. B. Gareth Jones; Johannes Z. Groenewald; Ruvishika S. Jayawardena; James D. Lawrey; Jian Kui Liu; Robert Lücking; Hugo Madrid; Dimuthu S. Manamgoda; Lucia Muggia; Matthew P. Nelsen; Rungtiwa Phookamsak; Satinee Suetrong; Kazuaki Tanaka; Kasun M. Thambugala; Dhanushka N. Wanasinghe; Saowanee Wikee; Ying Zhang; André Aptroot
Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data.
Fungal Diversity | 2011
Walter M. Jaklitsch
To date 75 species of Hypocrea/Trichoderma forming teleomorphs are recognised in Europe. The 56 hyaline-spored species are here described in detail and illustrated in colour plates, including cultures and anamorphs. This number includes 16 new holomorphs, two new teleomorphs and nine anamorphs of species previously described as teleomorphs. Phylogenetic placement and relationships of the species are shown on the strict consensus tree, based on sequences of RNA polymerase II subunit b (rpb2) and translation elongation factor 1 alpha (tef1) exon, comprising 135 species of the genus Hypocrea/Trichoderma. All available holotypes of species described from Europe including some from North America have been examined. A dichotomous key to the species is provided primarily utilising ecological and morphological traits of the teleomorphs and, where necessary, morphology of the anamorphs and cultures, and growth rates. Species descriptions are subdivided among five chapters, arranged primarily according to the larger phylogenetic clades, viz. section Trichoderma with 13 species, the pachybasium core group with 13 species including four species with stipitate stromata (‘Podostroma’), species forming large effused stromata with 10 species including the section Hypocreanum, 9 species of the Brevicompactum, Lutea and Psychrophila clades, and 11 residual species of various smaller clades or of unknown phylogenetic placement. Finally, a list comprising dubious names and species excluded from Hypocrea that are relevant for Europe, or species claimed to occur in Europe by other authors is provided. Hypocrea minutispora is by far the most common species in Europe. For H. moravica, H. subalpina and H. tremelloides the anamorphs are newly described. The anamorphs of the latter two species and H. sambuci produce hyaline conidia on unusual structures new to Trichoderma. These three species form a new subclade of the morphologically strikingly different section Longibrachiatum, which is currently only represented by H. schweinitzii in Europe as a holomorph. The subclade is not named yet formally due to low statistical support. H. fungicola f. raduli is described as the new species H. austriaca, while H. hypomycella was found not to belong to Hypocrea. The typification of H. pilulifera, H. tremelloides and H. lutea has been clarified. Gliocladium deliquescens, the anamorph of H. lutea, is combined in Trichoderma. Species are epitypified where appropriate. Anamorph names are established prospectively to avoid numerous new combinations in future when they may be possibly used as holomorphic names if the ICBN is altered accordingly.
Fungal Diversity | 2012
Gary J. Samuels; Adnan Ismaiel; Temesgen B. Mulaw; George Szakacs; Irina S. Druzhinina; Christian P. Kubicek; Walter M. Jaklitsch
The Longibrachiatum Clade of Trichoderma is revised. Eight new species are described (T. aethiopicum, T. capillare, T. flagellatum, T. gillesii, T. gracile, T. pinnatum, T. saturnisporopsis, T. solani). The twenty-one species known to belong to the Longibrachiatum Clade are included in a synoptic key. Trichoderma parareesei and T. effusum are redescribed based on new collections or additional observations. Hypocrea teleomorphs are reported for T. gillesii and T. pinnatum. Previously described species are annotated.
Fungal Biology | 2008
Hermann Voglmayr; Walter M. Jaklitsch
Data from microscopic morphology, single-spore cultures, and DNA analyses of teleomorphs and anamorphs support the recognition of five species of Prosthecium with Stegonsporium anamorphs on Acer: P. acerinum sp. nov., the teleomorph of S. acerinum; P. acerophilum comb. nov., formerly known as Dictyoporthe acerophila; P. galeatum comb. nov., originally described as Massaria galeata; P. opalus sp. nov.; and P. pyriforme sp. nov., the teleomorph of S. pyriforme s. str. The morphology of both type specimens and freshly collected material was investigated. The teleomorphs have brown ellipsoidal ascospores with five distosepta and often a longitudinal distoseptum. The anamorphs of all species described here belong to Stegonsporium; their connection to the Prosthecium teleomorphs was demonstrated by morphology and DNA sequences of single spore cultures derived from both ascospores and conidia. The anamorphs and teleomorphs of all five Prosthecium species are described and illustrated by LM images, and a key to these species is provided. As perceived from this work, S. pyriforme is restricted to Europe and does not occur in North America, whereas S. acerinum is restricted to North America, not found in Europe. The host associations given in the literature are revised and evidence is provided that only A. opalus, A. pseudoplatanus, and A. saccharum are confirmed hosts of Prosthecium with Stegonsporium anamorphs. Molecular phylogenetic analyses of tef1, ITS rDNA, and partial nuLSU rDNA sequences confirm that the species with Stegonsporium anamorphs are closely related to P. ellipsosporum, the generic type species. Stilbospora macrosperma is confirmed as the anamorph of P. ellipsosporum by DNA data of single spore isolates obtained from both ascospores and conidia.
Mycologia | 2015
Priscila Chaverri; Fabiano Branco-Rocha; Walter M. Jaklitsch; Romina Gazis; Thomas Degenkolb; Gary J. Samuels
Trichoderma harzianum is known as a cosmopolitan, ubiquitous species associated with a wide variety of substrates. It is possibly the most commonly used name in agricultural applications involving Trichoderma, including biological control of plant diseases. While various studies have suggested that T. harzianum is a species complex, only a few cryptic species are named. In the present study the taxonomy of the T. harzianum species complex is revised to include at least 14 species. Previously named species included in the complex are T. guizhouense, T. harzianum, and T. inhamatum. Two new combinations are proposed, T. lentiforme and T. lixii. Nine species are described as new, T. afarasin, T. afroharzianum, T. atrobrunneum, T. camerunense, T. endophyticum, T. neotropicale, T. pyramidale, T. rifaii and T. simmonsii. We isolated Trichoderma cultures from four commercial biocontrol products reported to contain T. harzianum. None of the biocontrol strains were identified as T. harzianum s. str. In addition, the widely applied culture ‘T. harzianum T22’ was determined to be T. afroharzianum. Some species in the T. harzianum complex appear to be exclusively endophytic, while others were only isolated from soil. Sexual states are rare. Descriptions and illustrations are provided. A secondary barcode, nuc translation elongation factor 1-α (TEF1) is needed to identify species in this complex.
Fungal Genetics and Biology | 2012
Irina S. Druzhinina; Adnan Ismaiel; Walter M. Jaklitsch; Temesgen Mullaw; Gary J. Samuels; Christian P. Kubicek
Highlights ► Longibrachiatum clade consists of at least 26 phylogenetic species. ► Many species are allopatric although sympatric species are also present. ► The majority of species lost their ability to sexual reproduction. ► The K/θ method is a useful measure to delineate species in the Longibrachiatum clade. ► The combination of the GCPSR and K/θ method gives the most adequate result for species delineation.
Fungal Diversity | 2011
Hermann Voglmayr; Walter M. Jaklitsch
Molecular phylogenetic analyses of a four-gene sequence matrix (LSU, SSU, rpb2, tef1) demonstrate monophyly of the genus Massaria, which is placed as most basal lineage within Pleosporales. Data from microscopic morphology, pure cultures, and phylogenetic analyses of partial SSU-ITS-LSU rDNA and tef1 sequences revealed 17 taxa of Massaria, seven of which are described as new (M. ariae, M. aucupariae, M. campestris, M. mediterranea, M. parva, M. platanoidea, M. vindobonensis). Massarina macra is formally combined into Massaria. Synonymy of the genus Aglaospora with Massaria is confirmed, and the generic type Massaria inquinans is lecto- and epitypified. Massaria vomitoria, M. gigaspora and M. pyri, commonly considered as conspecific with M. inquinans, are shown to be distinct species. Due to homonymy, the new name M. gigantispora is introduced for M. gigaspora Fuckel. Several species are lecto- and/or epitypified. A key to all treated species is provided. Most Massaria species revealed by molecular phylogenetic analyses can be well characterised by a suite of morphological traits like ascospore shape, ascospore length and width, ascospore colour in the intact ascus vs. after ejection, size of pseudothecia, presence or absence of a black stromatic zone delimiting the pseudostroma, and staining of the substrate. Two different modes of ascospore germination were observed in pure culture, i.e. hyphal or by ejection of a naked protoplast, the former developing into hyphal colonies and the latter into meristematically growing colonies. Modes of ascospore germination and colony growth were found to be characteristic for the respective species. All species were found to be highly host-specific, disproving the wide host range given for Massaria inquinans in the literature. Biodiversity of Massaria was found to be centred on the genus Acer (seven species), where up to four species can occur on the same host species, and on Rosaceae (four species). Evidence for a hemibiotrophic life style and weak parasitism of Massaria is provided and discussed. Geographic distribution of species is reconsidered, concluding that Europe may be the centre of Massaria biodiversity.
Studies in Mycology | 2015
Walter M. Jaklitsch; Hermann Voglmayr
The first large-scale survey of sexual and asexual Trichoderma morphs collected from plant and fungal materials conducted in Southern Europe and Macaronesia including a few collections from French islands east of Africa yielded more than 650 specimens identified to the species level. Routine sequencing of tef1 revealed a genetic variation among these isolates that exceeds previous experience and ca. 90 species were recognized, of which 74 are named and 17 species newly described. Aphysiostroma stercorarium is combined in Trichoderma. For the first time a sexual morph is described for T. hamatum. The hitherto most complete phylogenetic tree is presented for the entire genus Trichoderma, based on rpb2 sequences. For the first time also a genus-wide phylogenetic tree based on acl1 sequences is shown. Detailed phylogenetic analyses using tef1 sequences are presented in four separate trees representing major clades of Trichoderma. Discussions involve species composition of clades and ecological and biogeographic considerations including distribution of species.
Fungal Diversity | 2012
Walter M. Jaklitsch; Hermann Voglmayr
Eight inconspicuous non-stromatic perithecial fungi immersed in plant tissue are assessed with respect to their morphology, ecology and phylogenetic position. Emphasis is laid on two genera now and then placed in the family Hyponectriaceae, Xylariales: Leiosphaerella with its type species L. praeclara occurring on Vaccinium, and Pseudomassaria with its type species P. chondrospora occurring on Tilia. In molecular phylogenetic analyses of LSU and ITS sequences, the generic types of these genera are closely related, but their familial affiliation within Xylariales remains unresolved. Pseudomassaria sepincoliformis clusters with P. chondrospora, whereas P. fallax is not congeneric with Pseudomassaria and P. lycopodina is combined in Leiosphaerella despite its apiospores. Three species thought to belong to Leiosphaerella are re-assessed: L. moravica that occurs on Rosa, is disposed in the new genus Rosasphaeria, which is close to Eucasphaeria in the Niessliaceae (Hypocreales), according to multi-gene phylogenetic analyses (ITS, LSU, rpb2 and tef1). For L. vexata the genus Pseudomassariella is revived. A Leiosphaerella-like fungus on Lycopodium is described as the new species Monographella lycopodina. In addition the phylogenetic relationships of two fungi forming superficial stromata are here clarified: Collodiscula japonica belongs to the Xylariaceae, while Melogramma campylosporum may currently be interpreted as representing a family of its own, the Melogrammataceae.