Walter Nowotny
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter Nowotny.
Astronomy and Astrophysics | 2009
Bernhard Aringer; Léo Girardi; Walter Nowotny; Paola Marigo; Michael T. Lederer
Context. Carbon rich objects represent an important phase during the late stages of evolution of low and intermediate mass stars. They contribute significantly to the chemical enrichment and to t he infrared light of galaxies. A proper description of their atmospheres is crucial for the determination of fundamental parameters su ch as effective temperature or mass loss rate. Aims. We study the spectroscopic and photometric properties of carbon stars. In the first paper of this series we focus on object s that can be described by hydrostatic models neglecting dynamical phenomena like pulsation and mass loss. As a consequence, the reddening due to circumstellar dust is not included. Our res ults are collected in a database, which can be used in conjunction with stellar evolution and population synthesis calculations i nvolving the AGB. Methods. We have computed a grid of 746 spherically symmetric COMARCSatmospheres covering effective temperatures between 2400 and 4000 K, surface gravities from log(g [cm/s 2 ]) = 0.0 to−1.0, metallicities ranging from the solar value down to one tenth of it and C/O ratios in the interval between 1.05 and 5.0. Subsequently, we used these models to create synthetic low resolution spectra and photometric data for a large number of filter systems. The tables including the results are electronically available . First tests of the application on stellar evolution calculations are show n. Results. We have selected some of the most commonly used colours in order to discuss their behaviour as a function of the stellar parameters. A comparison with measured data shows that down to 2800 K the agreement between predictions and observations of carbon stars is good and our results may be used to determine quantities like the effective temperature. Below this limit the synthetic colours are much too blue. The obvious reason for these problems is the neglect of circumstellar reddening and structura l changes due to pulsation and mass loss. Conclusions. The warmer carbon stars with weak pulsation can be successfully described by our hydrostatic models. In order to include also the cooler objects with intense variations, at least a proper treatment of the reddening caused by the dusty envelopes is needed. This will be the topic of the second paper of this seri es.
Astronomy and Astrophysics | 2010
Walter Nowotny; Susanne Höfner; Bernhard Aringer
Context. Towards the end of the evolutionary stage of the asymptotic giant branch (AGB) the atmospheres of evolved red giants are considerably influenced by radial pulsations of the stellar interiors and developing stellar winds. The resulting complex velocity fields severely affect molecular line profiles (shapes, time-dependent shifts in wavelength, multiple components) observable in near-infrared spectra of long period variables. Time-series high-resolution spectroscopy allows us to probe the atmospheric kinematics and thereby study the mass loss process. Aims. With the help of model calculations the complex line formation process in AGB atmospheres was explored with the focus on velocity effects. Furthermore, we aimed for atmospheric models which are able to quantitatively reproduce line profile variations found in observed spectra of pulsating late-type giants. Methods. Models describing pulsation-enhanced dust-driven winds were used to compute synthetic spectra under the assumptions of chemical equilibrium and LTE. For this purpose, we used molecular data from line lists for the considered species and solved the radiative transfer in spherical geometry including the effects of velocity fields. Radial velocities (RV) derived from Doppler-shifted (components of) synthetic line profiles provide information on the gas velocities in the line-forming region of the spectral features. In addition, we made use of radial optical depth distributions to give estimates for the layers where lines are formed and to illustrate the effects of velocities in the line formation process. Results. Assuming uniform gas velocities for all depth points of an atmospheric model we estimated the conversion factor between gas velocities and measured RVs to p = ugas/RV ≈ 1.2−1.5. On the basis of dynamic model atmospheres and by applying our spectral synthesis codes we investigated in detail the finding that various molecular features in AGB spectra originate at different geometrical depths of the very extended atmospheres of these stars. We show that the models are able to quantitatively reproduce the characteristic line profile variations of lines sampling the deep photosphere (CO Δv = 3, CN) of Mira variables and the corresponding discontinuous, S-shaped RV curve. The global velocity fields (traced by different features) of typical long-period variables are also realistically reproduced. Possible reasons for discrepancies concerning other modelling results (e.g. CO Δv = 2 lines) are outlined. In addition, we present a model showing variations of CO Δv = 3 line profiles comparable to observed spectra of semiregular variables and discuss that the non-occurence of line doubling in these objects may be due to a density effect. Conclusions. The results of our line profile modelling are another indication that the dynamic models studied here are approaching a realistic representation of the outer layers of AGB stars with or without mass loss.
Astronomy and Astrophysics | 2005
Walter Nowotny; Bernhard Aringer; Susanne Höfner; Rita Gautschy-Loidl; Walter Windsteig
Atmospheres of evolved AGB stars are heavily affected by pulsation, dust formation and mass loss, and they can become very extended. Time series of observed high-resolution spectra proved to be a useful tool to study atmospheric dynamics throughout the outer layers of these pulsating red giants. Originating at various depths, different molecular spectral lines observed in the near-infrared can be used to probe gas velocities there for different phases during the lightcycle. Dynamic model atmospheres are needed to represent the complicated structures of Mira variables properly. An important aspect which should be reproduced by the models is the variation of line profiles due to the influence of gas velocities. Based on a dynamic model, synthetic spectra (containing CO and CN lines) were calculated, using an LTE radiative transfer code that includes velocity effects. It is shown that profiles of lines that sample different depths qualitatively reproduce the behaviour expected from observations.
Astronomy and Astrophysics | 2003
Walter Nowotny; Franz Kerschbaum; Hans Olofsson; H. E. Schwarz
We present results of our ongoing photometric survey of Local Group galaxies, using a four filter technique based on the method of Wing (1971) to identify and characterise the late-type stellar content. Two narrow band filters centred on spectral features of TiO and CN allow us to distinguish between AGB stars of different chemistries (M-type (O-rich) and C-type (C-rich)). The major parts of two dwarf galaxies of the M 31 subgroup - NGC 185 and NGC 147 - were observed. From photometry in V and i we estimate the tip of the RGB, and derive distance moduli respectively. With additional photometric data in the narrow band filters TiO and CN we identify 154 new AGB carbon stars in NGC 185 and 146 in NGC 147. C/M ratios are derived, as well as mean absolute magnitudesMi� , bolometric magnitudes Mbol, luminosity functions, and the spatial/radial distributions of the C stars in both galaxies.
Astronomy and Astrophysics | 2011
Walter Nowotny; Bernhard Aringer; Susanne Höfner; Michael T. Lederer
Context. Red giant stars approaching the end of the evolutionary phase of the asymptotic giant branch (AGB) are, inter alia, characterised by (i) pulsations of the stellar interiors; and (ii) the development of dusty stellar winds. Therefore, such very evolved objects cannot be adequately described with hydrostatic dust-free model atmospheres. Aims. By using self-consistent dynamic model atmospheres which simulate pulsation-enhanced dust-driven winds we studied in detail the influence of the above mentioned two effects on the spectral appearance of long period variables with carbon-rich atmospheric chemistry. While the pulsations lead to large-amplitude photometric variability, the dusty envelopes (resulting from the outflows which contain dust particles composed of amorphous carbon) cause pronounced circumstellar reddening. Methods. Based on one selected dynamical model which is representative of C-type Mira variables with intermediate mass loss rates, we calculated synthetic spectra and photometry for standard broad-band filters (Johnson-Cousins-Glass system) from the visual to the near-infrared. The synthetic photometry was subsequently compared with observational results. Results. Our modelling allows to investigate in detail the substantial effect of circumstellar dust on the resultant photometry. The pronounced absorption of amorphous carbon dust grains (increasing towards shorter wavelengths; Qabs/a ∝ λ −β with β ≈ 1), leads to colour indices which are significantly redder than the corresponding ones based on hydrostatic dust-free models. Only if we account for this circumstellar reddening we get synthetic colours that are comparable to observations of evolved AGB stars. The photometric variations of the dynamical model were compared to observed lightcurves of the C-type Mira RU Vir which appears to be quite similar to the model (although the model is not a dedicated fit). We found good agreement concerning the principal behaviour of the BVRIJHKL lightcurves and also quantitatively fitting details (e.g. magnitude ranges, the amplitude decrease from visual to NIR, absolute magnitudes). The analysed model is able to reproduce the variations of RU Vir and other Miras in (J −H )v s. (H −K )d iagrams throughout the light cycle (ranges, loops). Contrasting the model photometry with observational data for a variety of galactic C-rich giants in such colour-colour diagrams proved that the chosen atmospheric model fits well into a sequence of objects with increasing mass loss rates, i.e., redder colour indices. Conclusions. The comparison of our synthetic photometry with observational results provides a further indication that the applied dynamic model atmospheres represent the outer layers of pulsating and mass-losing C-rich AGB stars reasonably well.
Astronomy and Astrophysics | 2014
Kjell Eriksson; Walter Nowotny; Susanne Höfner; Bernhard Aringer; Astrid Wachter
Context. The evolution and spectral properties of stars on the asymptotic giant branch (AGB) are significantly affected by mass loss through dusty stellar winds. Dynamic atmosphere and wind models are an essential tool for studying these evolved stars, both individually and as members of stellar populations, to understand their contribution to the integrated light and chemical evolution of galaxies. Aims. This paper is part of a series with the purpose of testing state-of-the-art atmosphere and wind models of C-type AGB stars against observations, and making them available to the community for use in various theoretical and observational studies. Methods. We have computed low-resolution spectra and photometry (in the wavelength range 0.35-25 mu m) for a grid of 540 dynamic models with stellar parameters typical of solar-metallicity C-rich AGB stars and with a range of pulsation amplitudes. The models cover the dynamic atmosphere and dusty outflow (if present), assuming spherical symmetry, and taking opacities of gas-phase species and dust grains consistently into account. To characterize the time-dependent dynamic and photometric behaviour of the models in a concise way we defined a number of classes for models with and without winds. Results. Comparisons with observed data in general show a quite satisfactory agreement for example regarding mass-loss rates vs. (J - K) colours or K magnitudes vs. (J - K) colours. Some exceptions from the good overall agreement, however, are found and attributed to the range of input parameters (e.g. relatively high carbon excesses) or intrinsic model assumptions (e.g. small particle limit for grain opacities). Conclusions. While current results indicate that some changes in model assumptions and parameter ranges should be made in the future to bring certain synthetic observables into better agreement with observations, it seems unlikely that these pending improvements will significantly affect the mass-loss rates of the models.
Astronomy and Astrophysics | 2013
Sara Bladh; Susanne Höfner; Walter Nowotny; Bernhard Aringer; Kjell Eriksson
Context. The heavy mass loss observed in evolved asymptotic giant branch (AGB) stars is usually attributed to a two-stage process: atmospheric levitation by pulsation-induced shock waves, followed ...
Astronomy and Astrophysics | 2011
Stéphane Sacuto; Bernhard Aringer; Josef Hron; Walter Nowotny; Claudia Paladini; T. Verhoelst; Susanne Höfner
Context. We study the circumstellar environment of the carbon-rich star R Sculptoris using the near- and mid-infrared high spatial resolution observations from the ESO-VLTI focal instruments VINCI and MIDI, respectively. Aims. These observations aim at increasing our knowledge of the dynamic processes in play within the very close circumstellar environment where the mass loss of AGB stars is initiated. Methods. We first compare the spectro-interferometric measurements of the star at different epochs to detect the dynamic signatures of the circumstellar structures at different spatial and spectral scales. We then interpret these data using a self-consistent dynamic model atmosphere to discuss the dynamic picture deduced from the observations. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort is first applied to determining these parameters. Results. Interferometric observations do not show any significant variability effect at the 16 m baseline between phases 0.17 and 0.23 in the K band, and for both the 15 m baseline between phases 0.66 and 0.97 and the 31 m baseline between phases 0.90 and 0.97 in the N band. We find fairly good agreement between the dynamic model and the spectrophotometric data from 0.4 to 25 μm. The model agrees well with the time-dependent flux data at 8.5 μm, whereas it is too faint at 11.3 and 12.5 μm. The VINCI visibility measurements are reproduced well, meaning that the extension of the model is suitable in the K-band. In the mid-infrared, the model has the proper extension to reveal molecular structures of C2H2 and HCN located above the stellar photosphere. However, the windless model used is not able to reproduce the more extended and dense dusty environment. Conclusions. Among the different explanations for the discrepancy between the model and the measurements, the strong nonequilibrium process of dust formation is one of the most probable. The transition from windless atmospheres to models with considerable mass-loss rates occurs in a very narrow range of stellar parameters, especially for the effective temperature, the C/O ratio, and the pulsation amplitude. A denser sampling of such critical regions of the parameter space with additional models might lead to a better representation of the extended structures of low mass-loss carbon stars like R Sculptoris. The complete dynamic coupling of gas and dust and the approximation of grain opacities with the small-particle limit in the dynamic calculation could also contribute to the difference between the model and the data.
Astronomy and Astrophysics | 2012
Thomas Lebzelter; Ulrike Heiter; C. Abia; Kjell Eriksson; Megan Ireland; Hilding R. Neilson; Walter Nowotny; J. Maldonado; Thibault Merle; Robert Peterson; Bertrand Plez; C.~I. Short; Glenn M. Wahlgren; C. C. Worley; Bernhard Aringer; S. Bladh; P. de Laverny; Aruna Goswami; A. Mora; R.~P. Norris; A. Recio-Blanco; M. Scholz; F. Thévenin; Takashi Tsuji; G. Kordopatis; B. Montesinos; Robert F. Wing
Context. Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.
Astronomy and Astrophysics | 2011
Alain Jorissen; A. Mayer; S. Van Eck; Roland Ottensamer; F. Kerschbaum; Toshiya Ueta; Per Bergman; Joris Blommaert; L. Decin; Martin A. T. Groenewegen; J. Hron; Walter Nowotny; Hans Olofsson; Th. Posch; Lorant O. Sjouwerman; B. Vandenbussche; C. Waelkens
The asymptotic giant branch (AGB) stars X Her and TX Psc have been imaged at 70 and 160 μm with the PACS instrument onboard the Herschel satellite, as part of the large MESS (Mass loss of Evolved StarS) guaranteed time key program. The images reveal an axisymmetric extended structure with its axis oriented along the space motion of the stars. This extended structure is very likely to be shaped by the interaction of the wind ejected by the AGB star with the surrounding interstellar medium (ISM). As predicted by numerical simulations, the detailed structure of the wind-ISM interface depends upon the relative velocity between star+wind and the ISM, which is large for these two stars (108 and 55 km s −1 for X Her and TX Psc, respectively). In both cases, there is a compact blob upstream whose origin is not fully elucidated, but that could be the signature of some instability in the wind-ISM shock. Deconvolved images of X Her and TX Psc reveal several discrete structures along the outermost filaments, which could be Kelvin-Helmholtz vortices. Finally, TX Psc is surrounded by an almost circular ring (the signature of the termination shock?) that contrasts with the outer, more structured filaments. A similar inner circular structure seems to be present in X Her as well, albeit less clearly.