Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter P. Mac Cormack is active.

Publication


Featured researches published by Walter P. Mac Cormack.


International Journal of Systematic and Evolutionary Microbiology | 2008

Bizionia argentinensis sp. nov., isolated from surface marine water in Antarctica.

Andrés Bercovich; Susana Vázquez; Patricio Yankilevich; Silvia H. Coria; Marcelo Foti; Edgardo A. Hernández; Alejandro Vidal; Lucas Ruberto; Carlos Melo; Sergio A. Marenssi; Marcelo Criscuolo; Mariano Memoli; Marcelo Luis Arguelles; Walter P. Mac Cormack

A marine bacterial strain, designated strain JUB59(T), was isolated from surface seawater in Antarctica and subsequently characterized. Cells were found to be Gram-negative, non-motile rods forming butyrous, shiny, yellowish orange colonies on marine agar. Growth occurred at 2-28 degrees C (optimally at 22-25 degrees C) but not at 30 degrees C; Na+ ions were required, but 9 % NaCl (w/v) was not tolerated. Phylogenetic analysis, based on comparisons of the complete 16S rRNA gene sequence of the novel isolate with the sequences of closely related strains, showed that strain JUB59(T) belonged to the family Flavobacteriaceae, representing a novel species of the genus Bizionia. The highest levels of sequence similarity were found with respect to Bizionia myxarmorum ADA-4(T) (97.4 %) and Bizionia algoritergicola APA-1(T) (97.1 %). However, the DNA-DNA relatedness of strain JUB59(T) with respect to these two strains was low (15.9-17.3 and 19.3-22.1 %, respectively). The predominant fatty acids of strain JUB59(T) were iso-15 : 1omega10c (18.1 %), iso-15 : 0 (17.3 %), anteiso-15 : 0 (13.9 %), iso-17 : 0 3-OH (9.2 %), 15 : 0 (6.0 %) and iso-16 : 0 3-OH (5.3 %). The main polar lipids were phosphatidylethanolamine, an aminolipid, an amino-positive phospholipid and two unidentified lipids. MK-6 was the major respiratory quinone (>90 %) and the DNA G+C content was 34 mol%. On the basis of the data obtained, strain JUB59(T) represents a novel species of the genus Bizionia, for which the name Bizionia argentinensis sp. nov. is proposed. The type strain is JUB59(T) (=DSM 19628(T)=CCM-A-29 1259(T)).


Science of The Total Environment | 2015

Heavy metals in sediments and soft tissues of the Antarctic clam Laternula elliptica: more evidence as a possible biomonitor of coastal marine pollution at high latitudes?

Cristian Vodopivez; Antonio Curtosi; Edda C. Villaamil; Patricia Smichowski; Emilien Pelletier; Walter P. Mac Cormack

Studies on metal contamination in 25 de Mayo Island, Antarctica, yielded controversial results. In this work, we analyzed Antarctic marine sediments and Antarctic clam (Laternula elliptica) tissues to investigate the possible use of this mollusk as a biomonitor of metals and to identify the sources of metal pollution. Different types of paint from several buildings from Carlini Station were examined to assess their contribution to the local and random metal pollution. Five sediment samples, 105 L. elliptica specimens (40.2-78.0mm length) and four types of paint were analyzed to quantify Cd, Cr, Cu, Fe, Mn, Pb and Zn using inductively coupled plasma-optical emission spectrometry. Metal concentrations in sediments were lower than the global averages of the earths crust, with the exception of Cd and Cu. These results were related to the contribution of the local fresh-water runoff. The different varieties of paint showed low levels of Cu, Mn, Fe and Zn, whereas a broad range of values were found in the case of Cr and Pb (20-15,100 μg·g(-1) and 153-115,500 μg·g(-1) respectively). The remains of the paint would be responsible for the significant increases in Cr and Pb which are randomly detected by us and by other authors. High levels of Fe and Cd, in comparison to other Antarctic areas, appear to be related to the terrigenous materials transported by the local streams. Accumulation indexes suggested that kidney tissue from L. elliptica could be an adequate material for biomonitoring pollution with Cd, Zn and probably also Pb. In general, relationships between size and metal contents reported by other authors were not verified, suggesting that this issue should be revised.


Polar Research | 2012

Culturable heterotrophic bacteria from Potter Cove, Antarctica, and their hydrolytic enzymes production

Mauro Tropeano; Silvia H. Coria; Adrián G. Turjanski; Daniel O. Cicero; Andrés Bercovich; Walter P. Mac Cormack; Susana Vázquez

Affiliations of the dominant culturable bacteria isolated from Potter Cove, South Shetland Islands, Antarctica, were investigated together with their production of cold-active hydrolytic enzymes. A total of 189 aerobic heterotrophic bacterial isolates were obtained at 4°C and sorted into 63 phylotypes based on their amplified ribosomal DNA restriction analysis profiles. The sequencing of the 16S rRNA genes of representatives from each phylotype showed that the isolates belong to the phyla Proteobacteria (classes Alpha- and Gamma-proteobacteria), Bacteroidetes (class Flavobacteria), Actinobacteria (class Actinobacteria) and Firmicutes (class Bacilli). The predominant culturable group in the site studied belongs to the class Gammaproteobacteria, with 65 isolates affiliated to the genus Pseudoalteromonas and 58 to Psychrobacter. Among the 189 isolates screened, producers of amylases (9.5%), pectinases (22.8%), cellulases (14.8%), CM-cellulases (25.4%), xylanases (20.1%) and proteases (44.4%) were detected. More than 25% of the isolates produced at least one extracellular enzyme, with some of them producing up to six of the tested extracellular enzymatic activities. These results suggest that a high culturable bacterial diversity is present in Potter Cove and that this place represents a promising source of biomolecules.


Environmental Microbiology | 2016

Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments

Marina N. Matos; Mariana Lozada; Luciano E. Anselmino; Matías A. Musumeci; Bernard Henrissat; Janet K. Jansson; Walter P. Mac Cormack; JoLynn Carroll; Sara Sjöling; Leif Lundgren; Hebe M. Dionisi

Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate degradation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The aim of this work was to gain a better understanding of alginate utilization capabilities in cold coastal environments. Sediment metagenomes from four high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homologue sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including members of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments showed distinct structures with a higher proportion of novel genes. Examination of the gene neighbourhood of the alginate lyase homologues revealed distinct patterns depending on the potential lineage of the scaffolds, with evidence of evolutionary relationships among alginolytic gene clusters from Bacteroidetes and Proteobacteria. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass.


Science of The Total Environment | 2017

Bacterial communities and chemical parameters in soils and coastal sediments in response to diesel spills at Carlini Station, Antarctica

Susana Vázquez; Patrick Monien; Roberto Pepino Minetti; Jutta Jürgens; Antonio Curtosi; Julia Villalba Primitz; Stephan Frickenhaus; Doris Abele; Walter P. Mac Cormack; Elisabeth Helmke

A diesel spill occurring at Carlini Station (King George Island (Isla 25 de Mayo), South Shetland Islands) in 2009 started the study of the fate of the hydrocarbons and their effect on the bacterial communities of the Potter Cove ecosystem. Soils and sediments were sampled across the 200-meter long diesel plume towards Potter Cove four and 15months after the spill. The sampling revealed a second fuel leakage from an underground pipeline at the spill site. The hydrocarbon fraction spilt over frozen and snow-covered ground reached the sea and dispersed with the currents. Contrary, diesel that infiltrated unfrozen soil remained detectable for years, and was seeping with ground water towards coastal marine sediments. Structural changes of the bacterial communities as well as hydrocarbon, carbon and nitrogen contents were investigated in sediments in front of the station, two affected terrestrial sites, and a terrestrial non-contaminated reference site. Bacterial communities (16S rRNA gene clone libraries) changed over time in contaminated soils and sediments. At the underground seepage site of highest contamination (5812 to 366μgg-1dw hydrocarbons from surface to 90-cm depth), communities were dominated by Actinobacteria (18%) and a betaproteobacterium closely related to Polaromonas naphthalenivorans (40%). At one of the spill sites, affected exclusively at the surface, contamination disappeared within one year. The same bacterial groups were enriched at both contaminated sites. This response at community level suggests that the cold-adapted indigenous microbiota in soils of the West Antarctic Peninsula have a high potential for bioremediation and can support soil cleaning actions in the ecosystem. Intensive monitoring of pollution and site assessment after episodic fuel spills is required for decision-making towards remediation strategies.


Microbial Ecology | 2018

Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes

Fernando Espínola; Hebe M. Dionisi; Sharon E. Borglin; Colin J. Brislawn; Janet K. Jansson; Walter P. Mac Cormack; JoLynn Carroll; Sara Sjöling; Mariana Lozada

In this work, we analyzed the community structure and metabolic potential of sediment microbial communities in high-latitude coastal environments subjected to low to moderate levels of chronic pollution. Subtidal sediments from four low-energy inlets located in polar and subpolar regions from both Hemispheres were analyzed using large-scale 16S rRNA gene and metagenomic sequencing. Communities showed high diversity (Shannon’s index 6.8 to 10.2), with distinct phylogenetic structures (<40% shared taxa at the Phylum level among regions) but similar metabolic potential in terms of sequences assigned to KOs. Environmental factors (mainly salinity, temperature, and in less extent organic pollution) were drivers of both phylogenetic and functional traits. Bacterial taxa correlating with hydrocarbon pollution included families of anaerobic or facultative anaerobic lifestyle, such as Desulfuromonadaceae, Geobacteraceae, and Rhodocyclaceae. In accordance, biomarker genes for anaerobic hydrocarbon degradation (bamA, ebdA, bcrA, and bssA) were prevalent, only outnumbered by alkB, and their sequences were taxonomically binned to the same bacterial groups. BssA-assigned metagenomic sequences showed an extremely wide diversity distributed all along the phylogeny known for this gene, including bssA sensu stricto, nmsA, assA, and other clusters from poorly or not yet described variants. This work increases our understanding of microbial community patterns in cold coastal sediments, and highlights the relevance of anaerobic hydrocarbon degradation processes in subtidal environments.


Marine Drugs | 2017

Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

Matías A. Musumeci; Mariana Lozada; Daniela V. Rial; Walter P. Mac Cormack; Janet K. Jansson; Sara Sjöling; JoLynn Carroll; Hebe M. Dionisi

The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer–Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.


Journal of Basic Microbiology | 2017

Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica

María Martha Martorell; Lucas Ruberto; Pablo M. Fernández; Lucía I. C. de Figueroa; Walter P. Mac Cormack

The aim of this study was to investigate the ability to produce extracellular hydrolytic enzymes at low temperature of yeasts isolated from 25 de Mayo island, Antarctica, and to identify those exhibiting one or more of the evaluated enzymatic activities. A total of 105 yeast isolates were obtained from different samples and 66 were identified. They belonged to 12 basidiomycetous and four ascomycetous genera. Most of the isolates were ascribed to the genera Cryptococcus, Mrakia, Cystobasidium, Rhodotorula, Gueomyces, Phenoliferia, Leucosporidium, and Pichia. Results from enzymes production at low temperatures revealed that the Antarctic environment contains metabolically diverse cultivable yeasts, which represent potential tools for biotechnological applications. While most the isolates proved to produce 2‐4 of the investigated exoenzymes, two of them evidenced the six evaluated enzymatic activities: Pichia caribbica and Guehomyces pullulans, which were characterized as psycrotolerant and psycrophilic, respectively. In addition, P. caribbica could assimilate several n‐alkanes and diesel fuel. The enzyme production profile and hydrocarbons assimilation capacity, combined with its high level of biomass production and the extended exponential growth phase make P. caribbica a promising tool for cold environments biotechnological purposes in the field of cold‐enzymes production and oil spills bioremediation as well.


Revista Argentina De Microbiologia | 2014

Rich bacterial assemblages from Maritime Antarctica (Potter Cove, South Shetlands) reveal several kinds of endemic and undescribed phylotypes.

Ignacio A. Landone Vescovo; Marcelo Darío Golemba; Federico A. Di Lello; Andrés Carlos Alberto Culasso; Gustavo Levin; Lucas Ruberto; Walter P. Mac Cormack; José L. López

Bacterial richness in maritime Antarctica has been poorly described to date. Phylogenetic affiliation of seawater free-living microbial assemblages was studied from three locations near the Argentinean Jubany Station during two Antarctic summers. Sixty 16S RNA cloned sequences were phylogenetically affiliated to Alphaproteobacteria (30/60 clones), Gammaproteobacteria(19/60 clones), Betaproteobacteria and Cytophaga-Flavobacteriia-Bacteroides (CFB), which were (2/60) and (3/60) respectively. Furthermore, six out of 60 clones could not be classified. Both, Alphaproteobacteria and Gammaproteobacteria, showed several endemic and previously undescribed sequences. Moreover, the absence of Cyanobacteria sequences in our samples is remarkable. In conclusion, we are reporting a rich sequence assemblage composed of widely divergent isolates among themselves and distant from the most closely related sequences currently deposited in data banks.


FEMS Microbiology Ecology | 2017

Microbial and viral-like rhodopsins present in coastal marine sediments from four polar and subpolar regions

José L. López; Marcelo Darío Golemba; Edgardo A. Hernández; Mariana Lozada; Hebe M. Dionisi; Janet K. Jansson; JoLynn Carroll; Leif Lundgren; Sara Sjöling; Walter P. Mac Cormack

ABSTRACT Rhodopsins are broadly distributed. In this work, we analyzed 23 metagenomes corresponding to marine sediment samples from four regions that share cold climate conditions (Norway; Sweden; Argentina and Antarctica). In order to investigate the genes evolution of viral rhodopsins, an initial set of 6224 bacterial rhodopsin sequences according to COG5524 were retrieved from the 23 metagenomes. After selection by the presence of transmembrane domains and alignment, 123 viral (51) and non‐viral (72) sequences (>50 amino acids) were finally included in further analysis. Viral rhodopsin genes were homologs of Phaeocystis globosa virus and Organic lake Phycodnavirus. Non‐viral microbial rhodopsin genes were ascribed to Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Proteobacteria, Deinococcus‐Thermus and Cryptophyta and Fungi. A rescreening using Blastp, using as queries the viral sequences previously described, retrieved 30 sequences (>100 amino acids). Phylogeographic analysis revealed a geographical clustering of the sequences affiliated to the viral group. This clustering was not observed for the microbial non‐viral sequences. The phylogenetic reconstruction allowed us to propose the existence of a putative ancestor of viral rhodopsin genes related to Actinobacteria and Chloroflexi. This is the first report about the existence of a phylogeographic association of the viral rhodopsin sequences from marine sediments. &NA; Graphical Abstract Figure. Information in this manuscript is the first study on microbial rhodopsins present in coastal marine sediments. Also it reported a previously undescribed allopatric cladism for the viral rhodopsins sequences.

Collaboration


Dive into the Walter P. Mac Cormack's collaboration.

Top Co-Authors

Avatar

Lucas Ruberto

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Hebe M. Dionisi

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Mariana Lozada

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Janet K. Jansson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José L. López

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Susana Vázquez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge