Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter Pangborn is active.

Publication


Featured researches published by Walter Pangborn.


Nature | 2009

Structural basis for androgen specificity and oestrogen synthesis in human aromatase.

Debashis Ghosh; Jennifer Griswold; Mary Erman; Walter Pangborn

Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyse the biosynthesis of all oestrogens from androgens. Aromatase inhibitors therefore constitute a frontline therapy for oestrogen-dependent breast cancer. In a three-step process, each step requiring 1 mol of O2, 1 mol of NADPH, and coupling with its redox partner cytochrome P450 reductase, aromatase converts androstenedione, testosterone and 16α-hydroxytestosterone to oestrone, 17β-oestradiol and 17β,16α-oestriol, respectively. The first two steps are C19-methyl hydroxylation steps, and the third involves the aromatization of the steroid A-ring, unique to aromatase. Whereas most P450s are not highly substrate selective, it is the hallmark androgenic specificity that sets aromatase apart. The structure of this enzyme of the endoplasmic reticulum membrane has remained unknown for decades, hindering elucidation of the biochemical mechanism. Here we present the crystal structure of human placental aromatase, the only natural mammalian, full-length P450 and P450 in hormone biosynthetic pathways to be crystallized so far. Unlike the active sites of many microsomal P450s that metabolize drugs and xenobiotics, aromatase has an androgen-specific cleft that binds the androstenedione molecule snugly. Hydrophobic and polar residues exquisitely complement the steroid backbone. The locations of catalytically important residues shed light on the reaction mechanism. The relative juxtaposition of the hydrophobic amino-terminal region and the opening to the catalytic cleft shows why membrane anchoring is necessary for the lipophilic substrates to gain access to the active site. The molecular basis for the enzyme’s androgenic specificity and unique catalytic mechanism can be used for developing next-generation aromatase inhibitors.


Structure | 1995

Structure of human estrogenic 17β-hydroxysteroid dehydrogenase at 2.20 å resolution

Debashis Ghosh; Vladimir Z. Pletnev; Dao Wei Zhu; Zdislaw Wawrzak; William L. Duax; Walter Pangborn; Fernand Labrie; Sheng Xiang Lin

BACKGROUND The principal human estrogen, 17 beta-estradiol, is a potent stimulator of certain endocrine-dependent forms of breast cancer. Because human estrogenic 17 beta-hydroxysteroid dehydrogenase (type I 17 beta-HSD) catalyzes the last step in the biosynthesis of 17 beta-estradiol from the less potent estrogen, estrone, it is an attractive target for the design of inhibitors of estrogen production and tumor growth. This human enzyme shares less than 15% sequence identity with a bacterial 3 alpha,20 beta-HSD, for which the three-dimensional structure is known. The amino acid sequence of 17 beta-HSD also differs from that of bacterial 3 alpha,20 beta-HSD by two insertions (of 11 and 14 residues) and 52 additional residues at the C terminus. RESULTS The 2.20 A resolution structure of type I 17 beta-HSD, the first mammalian steroidogenic enzyme studied by X-ray crystallographic techniques, reveals a fold characteristic of the short-chain dehydrogenases. The active site contains a Tyr-X-X-X-Lys sequence (where X is any amino acid) and a serine residue, features that are conserved in short-chain steroid dehydrogenases. The structure also contains three alpha-helices and a helix-turn-helix motif, not observed in short-chain dehydrogenase structures reported previously. No cofactor density could be located. CONCLUSIONS The helices present in 17 beta-HSD that were not in the two previous short-chain dehydrogenase structures are located at one end of the substrate-binding cleft away from the catalytic triad. These helices restrict access to the active site and appear to influence substrate specificity. Modeling the position of estradiol in the active site suggests that a histidine side chain may play a critical role in substrate recognition. One or more of these helices may also be involved in the reported association of the enzyme with membranes. A model for steroid and cofactor binding as well as for the estrone to estradiol transition state is proposed. The structure of the active site provides a rational basis for designing more specific inhibitors of this breast cancer associated enzyme.


Structure | 1995

Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase.

Debashis Ghosh; Zdzislaw Wawrzak; Vladimir Z. Pletnev; Naiyin Li; Rudolf Kaiser; Walter Pangborn; Hans Jörnvall; Mary Erman; William L. Duax

BACKGROUND Candida cylindracea cholesterol esterase (CE) reversibly hydrolyzes cholesteryl linoleate and oleate. CE belongs to the same alpha/beta hydrolase superfamily as triacylglycerol acyl hydrolases and cholinesterases. Other members of the family that have been studied by X-ray crystallography include Torpedo californica acetylcholinesterase, Geotrichum candidum lipase and Candida rugosa lipase. CE is homologous to C. rugosa lipase 1, a triacylglycerol acyl hydrolase, with which it shares 89% sequence identity. The present study explores the details of dimer formation of CE and the basis for its substrate specificity. RESULTS The structures of uncomplexed and linoleate-bound CE determined at 1.9 A and 2.0 A resolution, respectively, reveal a dimeric association of monomers in which two active-site gorges face each other, shielding hydrophobic surfaces from the aqueous environment. The fatty-acid chain is buried in a deep hydrophobic pocket near the active site. The positioning of the cholesteryl moiety of the substrate is equivocal, but could be modeled in the hydrophobic core of the dimer interface. CONCLUSIONS The monomer structure is the same in both the complexed and uncomplexed crystal forms. The dimers differ in the relative positions of the two monomers at the dimer interface. Of the 55 residues that are different in CE from those in C. rugosa lipase 1, 23 are located in the active site and at the dimer interface. The altered substrate specificity is a direct consequence of these substitutions.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

X-ray structure of human aromatase reveals an androgen-specific active site.

Debashis Ghosh; Jennifer Griswold; Mary Erman; Walter Pangborn

Aromatase is a unique cytochrome P450 that catalyzes the removal of the 19-methyl group and aromatization of the A-ring of androgens for the synthesis of estrogens. All human estrogens are synthesized via this enzymatic aromatization pathway. Aromatase inhibitors thus constitute a frontline therapy for estrogen-dependent breast cancer. Despite decades of intense investigation, this enzyme of the endoplasmic reticulum membrane has eluded all structure determination efforts. We have determined the crystal structure of the highly active aromatase purified from human placenta, in complex with its natural substrate androstenedione. The structure shows the binding mode of androstenedione in the catalytically active oxidized high-spin ferric state of the enzyme. Hydrogen bond-forming interactions and tight packing hydrophobic side chains that complement the puckering of the steroid backbone provide the molecular basis for the exclusive androgenic specificity of aromatase. Locations of catalytic residues and water molecules shed new light on the mechanism of the aromatization step. The structure also suggests a membrane integration model indicative of the passage of steroids through the lipid bilayer.


Structure | 1994

Mechanism of inhibition of 3α,20β-hydroxysteroid dehydrogenaseby a licorice-derived steroidal inhibitor

Debashis Ghosh; Mary Erman; Zdzislaw Wawrzak; William L. Duax; Walter Pangborn

Abstract Background: Bacterial 3 α , 20 β -hydroxysteroid dehydrogenase (3 α , 20 β -HSD) reversibly oxidizes the 3 α and 20 β hydroxyl groups of androstanes and pregnanes and uses nicotinamide adenine dinucleotide as a cofactor. 3 α , 20 β -HSD belongs to a family of short-chain dehydrogenases that has a highly conserved Tyr-X-X-X-Lys sequence. The family includes mammalian enzymes involved in hypertension, digestion, fertility and sperm atogenesis. Several members of the enzyme family, including 3 α , 20 β -HSD, are competitively inhibited by glycyrrhizic acid, a steroidal compound found in licorice, and its derivative, carbenoxolone, ananti-inflammatory glucocorticoid. Results The three-dimensional structure of the enzyme-carbenoxolone complex has been determined and refined at 2.2 a resolution to a crystallographic R-factor of 19.4%. The hemisuccinate side chain of carbenoxolone makes a hydrogen bond with the hydroxyl group of the conserved residue Tyr152 and occupies the position of the nicotinamide ring of the cofactor. The occupancies of the inhibitor in four independent catalytic sites refine to 100%, 95%, 54% and 36%. Conclusion The steroid binds at the catalytic site in a mode much like the previously proposed mode of binding of the substrate cortisone. No bound cofactor molecules were found. The varying occupancy of steroid molecules observed in the four catalytic sites is either due to packing differences or indicates a cooperative effect among the four sites. The observed binding accounts for the inhibition of 3 α ,20 β -HSD.


Acta Crystallographica Section D-biological Crystallography | 1999

Determination of a protein structure by iodination: the structure of iodinated acetylxylan esterase.

Debashis Ghosh; Mary Erman; Mark Sawicki; Puloma Lala; Daniel R. Weeks; Naiyin Li; Walter Pangborn; Daniel J. Thiel; Hans Jörnvall; Rodrigo A. Gutiérrez; Jaime Eyzaguirre

Enzymatic and non-enzymatic iodination of the amino acid tyrosine is a well known phenomenon. The iodination technique has been widely used for labeling proteins. Using high-resolution X-ray crystallographic techniques, the chemical and three-dimensional structures of iodotyrosines formed by non-enzymatic incorporation of I atoms into tyrosine residues of a crystalline protein are described. Acetylxylan esterase (AXE II; 207 amino-acid residues) from Penicillium purpurogenum has substrate specificities towards acetate esters of D-xylopyranose residues in xylan and belongs to a new class of alpha/beta hydrolases. The crystals of the enzyme are highly ordered, tightly packed and diffract to better than sub-angström resolution at 85 K. The iodination technique has been utilized to prepare an isomorphous derivative of the AXE II crystal. The structure of the enzyme determined at 1.10 A resolution exclusively by normal and anomalous scattering from I atoms, along with the structure of the iodinated complex at 1.80 A resolution, demonstrate the formation of covalent bonds between I atoms and C atoms at ortho positions to the hydroxyl groups of two tyrosyl moieties, yielding iodotyrosines.


Acta Crystallographica Section D-biological Crystallography | 2001

Structure of rat transthyretin (rTTR) complex with thyroxine at 2.5 Å resolution: first non‐biased insight into thyroxine binding reveals different hormone orientation in two binding sites

Andrzej Wojtczak; Vivian Cody; Joseph R. Luft; Walter Pangborn

The first observation of the unique environment for thyroxine (T(4)) binding in tetrameric rat transthyretin (rTTR) is reported as determined by X-ray diffraction. These data revealed different modes of hormone binding in the two unique hormone-binding sites in the rat TTR tetramer channel. Differences in the orientation of thyroxine and the position of water molecules in the two binding sites further suggest a mechanism for the docking pathway of the hormone into the channel of TTR. Crystals of the rat transthyretin-thyroxine complex are isomorphous with those reported for apo rTTR and crystallized in the tetragonal space group P4(3)2(1)2 with four independent TTR monomeric subunits in the asymmetric part of the crystal lattice. Data were collected to 2.5 A resolution and the structure was refined to R = 20.9% for 15 384 data in the resolution range 12-2.5 A. Similar to human TTR, the rat protein is also a 54 000 Da tetramer with four identical polypeptide chains of 127 amino-acid residues. Of the 22 amino-acid residues which differ between the human and rat sequences, none are in the thyroxine-binding domains. Analysis of these structural data reveals that the tertiary structure is similar to that of hTTR, with only small differences in the flexible loop regions on the surface of the structure. Conformational changes of the amino acids in the channel result in a hydrogen-bonded network that connects the two binding domains, in contrast to the hydrogen bonds formed along the tetramer interface in the apo transthyretin structure. These changes suggest a mechanism for the signal transmission between thyroxine-binding domains.


Biophysical Journal | 1998

Heterodimer Formation and Crystal Nucleation of Gramicidin D

Brian M. Burkhart; Ryan M. Gassman; David A. Langs; Walter Pangborn; William L. Duax

The linear pentadecapeptide antibiotic gramicidin D is a heterogeneous mixture of six components. Precise refinements of three-dimensional structures of naturally occurring gramicidin D in crystals obtained from methanol, ethanol, and n-propanol demonstrate the unexpected presence of stable left-handed antiparallel double-helical heterodimers that vary with the crystallization solvent. The side chains of Trp residues in the three structures exhibit sequence-specific patterns of conformational preference. Tyr substitution for Trp at position 11 appears to favor beta ribbon formation and stabilization of the antiparallel double helix that acts as a template for gramicidin folding and nucleation of different crystal forms. The fact that a minor component in a heterogeneous mixture influences aggregation and crystal nucleation has potential applications to other systems in which anomalous behavior is exhibited by aggregation of apparently homogeneous materials, such as the enigmatic behavior of prion proteins.


Acta Crystallographica Section D-biological Crystallography | 2000

R6 hexameric insulin complexed with m-cresol or resorcinol.

G.D. Smith; E. Ciszak; L.A. Magrum; Walter Pangborn; Robert H. Blessing

The structures of three R(6) human insulin hexamers have been determined. Crystals of monoclinic m-cresol-insulin, monoclinic resorcinol-insulin and rhombohedral m-cresol-insulin diffracted to 1. 9, 1.9 and 1.78 A, respectively, and have been refined to residuals of 0.195, 0.179 and 0.200, respectively. In all three structures, a phenolic derivative is found to occupy the phenolic binding site, where it forms hydrogen bonds to the carbonyl O atom of CysA6 and the N atom of CysA11. Two additional phenolic derivative binding sites were identified within or between hexamers. The structures of all three hexamers are nearly identical, although a large displacement of the N-terminus of one B chain in both monoclinic structures results from coordination to a sodium ion which is located between symmetry-related hexamers. Other minor differences in structure arise from differences in packing in the monoclinic cell compared with the rhombohedral cell. Based upon the differences in conformation of the GluB13 side chains in T(6), T(3)R(f)(3) and R(6) hexamers, the deprotonation of these side chains appears to be associated with the T-->R conformational transition.


Proteins | 2000

Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin‐like specificities

Vladimir Z. Pletnev; Tatyana S. Zamolodchikova; Walter Pangborn; William L. Duax

The three‐dimensional structure of duodenase, a serine protease from bovine duodenum mucosa, has been determined at 2.4Å resolution. The enzyme, which has both trypsin‐like and chymotrypsin‐like activities, most closely resembles human cathepsin G with which it shares 57% sequence identity and similar specificity. The catalytic Ser195 in duodenase adopts the energetically favored conformation typical of serine proteinases and unlike the strained state typical of lipase/esterases. Of several waters in the active site of duodenase, the one associated with Ser214 is found in all serine proteinases and most lipase/esterases. The conservation of the Ser214 residue in serine proteinase, its presence in the active site, and participation in a hydrogen water network involving the catalytic triad (His57, Asp107, and Ser195) argues for its having an important role in the mechanism of action. It may be referred to as a fourth member of the catalytic triad. Duodenase is one of a growing family of enzymes that possesses trypsin‐like and chymotrypsin‐like activity. Not long ago, these activities were considered to be mutually exclusive. Computer modeling reveals that the S1 subsite of duodenase has structural features compatible with effective accommodation of P1 residues typical of trypsin (Arg/Lys) and chymotrypsin (Tyr/Phe) substrates. The determination of structural features associated with functional variation in the enzyme family may permit design of enzymes with a specific ratio of trypsin and chymotrypsin activities. Proteins 2000;41:8–16.

Collaboration


Dive into the Walter Pangborn's collaboration.

Top Co-Authors

Avatar

Vivian Cody

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

William L. Duax

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Debashis Ghosh

Colorado School of Public Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Erman

Hauptman-Woodward Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Langs

Hauptman-Woodward Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge