Walter Pulverer
Austrian Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter Pulverer.
Clinical Neuropathology | 2014
Matthias Preusser; Anna Sophie Berghoff; Claudia Manzl; Martin Filipits; Andreas Weinhäusel; Walter Pulverer; Karin Dieckmann; Georg Widhalm; Adelheid Wöhrer; Christine Marosi; Johannes A. Hainfellner
Testing of the MGMT promoter methylation status in glioblastoma is relevant for clinical decision making and research applications. Two recent and independent phase III therapy trials confirmed a prognostic and predictive value of the MGMT promoter methylation status in elderly glioblastoma patients. Several methods for MGMT promoter methylation testing have been proposed, but seem to be of limited test reliability. Therefore, and also due to feasibility reasons, translation of MGMT methylation testing into routine use has been protracted so far. Pyrosequencing after prior DNA bisulfite modification has emerged as a reliable, accurate, fast and easy-to-use method for MGMT promoter methylation testing in tumor tissues (including formalin-fixed and paraffin-embedded samples). We performed an intra- and inter-laboratory ring trial which demonstrates a high analytical performance of this technique. Thus, pyrosequencing-based assessment of MGMT promoter methylation status in glioblastoma meets the criteria of high analytical test performance and can be recommended for clinical application, provided that strict quality control is performed. Our article summarizes clinical indications, practical instructions and open issues for MGMT promoter methylation testing in glioblastoma using pyrosequencing.
PLOS ONE | 2013
Beate Rinner; Birgit Lohberger; Elke Verena Froehlich; Walter Pulverer; Carina Fischer; Katharina Meditz; Susanne Scheipl; Slave Trajanoski; Christian Guelly; Andreas Leithner; Bernadette Liegl
Chordomas are rare mesenchymal tumors occurring exclusively in the midline from clivus to sacrum. Early tumor detection is extremely important as these tumors are resistant to chemotherapy and irradiation. Despite continuous research efforts surgical excision remains the main treatment option. Because of the often challenging anatomic location early detection is important to enable complete tumor resection and to reduce the high incidence of local recurrences. The aim of this study was to explore whether DNA methylation, a well known epigenetic marker, may play a role in chordoma development and if hypermethylation of specific CpG islands may serve as potential biomarkers correlated with SNP analyses in chordoma. The study was performed on tumor samples from ten chordoma patients. We found significant genomic instability by Affymetrix 6.0. It was interesting to see that all chordomas showed a loss of 3q26.32 (PIK 3CA) and 3q27.3 (BCL6) thus underlining the potential importance of the PI3K pathway in chordoma development. By using the AITCpG360 methylation assay we elucidated 20 genes which were hyper/hypomethylated compared to normal blood. The most promising candidates were nine hyper/hypomethylated genes C3, XIST, TACSTD2, FMR1, HIC1, RARB, DLEC1, KL, and RASSF1. In summary, we have shown that chordomas are characterized by a significant genomic instability and furthermore we demonstrated a characteristic DNA methylation pattern. These findings add new insights into chordoma development, diagnosis and potential new treatment options.
Expert Review of Molecular Diagnostics | 2012
Gerda Egger; Matthias Wielscher; Walter Pulverer; Albert Kriegner; Andreas Weinhäusel
DNA methylation provides a fundamental epigenetic mechanism to establish and promote cell-specific gene-expression patterns, which are inherited by subsequent cell generations. Thus, the epigenome determines the differentiation into a cell lineage but can also program cells to become abnormal or malignant. In humans, different germline and somatic diseases have been linked to faulty DNA methylation. In this article, we will discuss the available PCR-based technologies to assess differences in DNA methylation levels mainly affecting 5-methylcytosine in the CpG dinucleotide context in hereditary syndromal and somatic pathological conditions. We will discuss some of the current diagnostic applications and provide an outlook on how DNA methylation-based biomarkers might provide novel tools for diagnosis, prognosis or patient stratification for diseases such as cancer.
Cell Reports | 2016
Melanie R. Hassler; Walter Pulverer; Ranjani Lakshminarasimhan; Elisa Redl; Julia Hacker; Gavin D. Garland; Olaf Merkel; Ana-Iris Schiefer; Ingrid Simonitsch-Klupp; Lukas Kenner; Daniel J. Weisenberger; Suzanne D. Turner; Gerda Egger
Summary Aberrant DNA methylation patterns in malignant cells allow insight into tumor evolution and development and can be used for disease classification. Here, we describe the genome-wide DNA methylation signatures of NPM-ALK-positive (ALK+) and NPM-ALK-negative (ALK−) anaplastic large-cell lymphoma (ALCL). We find that ALK+ and ALK− ALCL share common DNA methylation changes for genes involved in T cell differentiation and immune response, including TCR and CTLA-4, without an ALK-specific impact on tumor DNA methylation in gene promoters. Furthermore, we uncover a close relationship between global ALCL DNA methylation patterns and those in distinct thymic developmental stages and observe tumor-specific DNA hypomethylation in regulatory regions that are enriched for conserved transcription factor binding motifs such as AP1. Our results indicate similarity between ALCL tumor cells and thymic T cell subsets and a direct relationship between ALCL oncogenic signaling and DNA methylation through transcription factor induction and occupancy.
Epigenomics | 2014
Christa Noehammer; Walter Pulverer; Melanie R. Hassler; Manuela Hofner; Matthias Wielscher; Klemens Vierlinger; Triantafillos Liloglou; David McCarthy; Taylor J Jensen; Anders Nygren; Henning Gohlke; Geert Trooskens; Maarten Braspenning; Wim Van Criekinge; Gerda Egger
DNA methylation is a stable covalent epigenetic modification of primarily CpG dinucleotides that has recently gained considerable attention for its use as a biomarker in different clinical settings, including disease diagnosis, prognosis and therapeutic response prediction. Although the advent of genome-wide DNA methylation profiling in primary disease tissue has provided a manifold resource for biomarker development, only a tiny fraction of DNA methylation-based assays have reached clinical testing. Here, we provide a critical overview of different analytical methods that are suitable for biomarker validation, including general study design considerations, which might help to streamline epigenetic marker development. Furthermore, we highlight some of the recent marker validation studies and established markers that are currently commercially available for assisting in clinical management of different cancers.
Food Chemistry | 2013
Christina Ecker; Anna Ertl; Walter Pulverer; Albert Nemes; Pal Szekely; Angelika Petrasch; Gertrud Linsberger-Martin; Margit Cichna-Markl
Methods applied in food allergen analysis should be specific, sensitive and applicable to both raw and highly processed foods. The performance of the most commonly used methods, ELISA and real-time PCR, may, however, be influenced by food processing steps, e.g., heat treatment. The present study compares the applicability of four in-house developed methods, one sandwich ELISA, two competitive ELISAs and a real-time PCR method, for the detection of lupine in four different food matrices, comprising bread, biscuits, rice patties and noodles. In order to investigate the influence of food processing on the detectability, not only the heat treated model foods but also the corresponding doughs were analysed. The sandwich ELISA proved to be the most sensitive method. The LOD was found to be 10 ppm lupine, independent from the food matrix and independent if the dough or the heat treated food was analysed. In addition, the methods were applied to the analysis of commercial foodstuffs differing in their labelling.
Clinical Neuropathology | 2014
Walter Pulverer; Manuela Hofner; Matthias Preusser; Elisabeth Dirnberger; Johannes A. Hainfellner
BACKGROUND MGMT promoter methylation is associated with favorable prognosis and chemosensitivity in glioblastoma multiforme (GBM), especially in elderly patients. We aimed to develop a simple methylation-sensitive restriction enzyme (MSRE)-based quantitative PCR (qPCR) assay, allowing the quantification of MGMT promoter methylation. METHODS DNA was extracted from non-neoplastic brain (n = 24) and GBM samples (n = 20) upon 3 different sample conservation conditions (-80 °C, formalin-fixed and paraffin-embedded (FFPE); RCL2-fixed). We evaluated the suitability of each fixation method with respect to the MSRE-coupled qPCR methylation analyses. Methylation data were validated by MALDITOF. RESULTS qPCR was used for evaluation of alternative tissue conservation procedures. DNA from FFPE tissue failed reliable testing; DNA from both RCL2-fixed and fresh frozen tissues performed equally well and was further used for validation of the quantitative MGMT methylation assay (limit of detection (LOD): 19.58 pg), using individuals undigested sample DNA for calibration. MGMT methylation analysis in non-neoplastic brain identified a background methylation of 0.10 ± 11% which we used for defining a cut-off of 0.32% for patient stratification. Of GBM patients 9 were MGMT methylationpositive (range: 0.56 - 91.95%), and 11 tested negative. MALDI-TOF measurements resulted in a concordant classification of 94% of GBM samples in comparison to qPCR. CONCLUSIONS The presented methodology allows quantitative MGMT promoter methylation analyses. An amount of 200 ng DNA is sufficient for triplicate analyses including control reactions and individual calibration curves, thus excluding any DNA qualityderived bias. The combination of RCL2-fixation and quantitative methylation analyses improves pathological routine examination when histological and molecular analyses on limited amounts of tumor samples are necessary for patient stratification.
British Journal of Cancer | 2015
Ruth Exner; Walter Pulverer; Martina Diem; Lisa Spaller; Laura Woltering; Martin Schreiber; Brigitte Wolf; Markus Sonntagbauer; Fabian Schröder; Judith Stift; Fritz Wrba; Michael Bergmann; Andreas Weinhäusel; Gerda Egger
Background:Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer.Methods:DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-fixed paraffin-embedded (FFPE) samples, respectively. The CpG island methylator phenotype (CIMP) was assessed by MethyLight in FFPE material from 78 patients with pT2 and pT3 rectal adenocarcinoma.Results:We identified and confirmed two novel three-gene signatures in fresh frozen samples that can distinguish tumours from adjacent tissue as well as from blood with a high sensitivity and specificity of up to 1 and an AUC of 1. In addition, methylation of individual CIMP markers was associated with specific clinical parameters such as tumour stage, therapy or patients’ age. Methylation of CDKN2A was a negative prognostic factor for overall survival of patients.Conclusions:The newly defined methylation markers will be suitable for early disease detection and monitoring of rectal cancer.
Clinical Epigenetics | 2016
Ram Vinay Pandey; Walter Pulverer; Rainer Kallmeyer; Gabriel Beikircher; Stephan Pabinger; Albert Kriegner; Andreas Weinhäusel
BackgroundBisulfite (BS) conversion-based and methylation-sensitive restriction enzyme (MSRE)-based PCR methods have been the most commonly used techniques for locus-specific DNA methylation analysis. However, both methods have advantages and limitations. Thus, an integrated approach would be extremely useful to quantify the DNA methylation status successfully with great sensitivity and specificity. Designing specific and optimized primers for target regions is the most critical and challenging step in obtaining the adequate DNA methylation results using PCR-based methods. Currently, no integrated, optimized, and high-throughput methylation-specific primer design software methods are available for both BS- and MSRE-based methods. Therefore an integrated, powerful, and easy-to-use methylation-specific primer design pipeline with great accuracy and success rate will be very useful.ResultsWe have developed a new web-based pipeline, called MSP-HTPrimer, to design primers pairs for MSP, BSP, pyrosequencing, COBRA, and MSRE assays on both genomic strands. First, our pipeline converts all target sequences into bisulfite-treated templates for both forward and reverse strand and designs all possible primer pairs, followed by filtering for single nucleotide polymorphisms (SNPs) and known repeat regions. Next, each primer pairs are annotated with the upstream and downstream RefSeq genes, CpG island, and cut sites (for COBRA and MSRE). Finally, MSP-HTPrimer selects specific primers from both strands based on custom and user-defined hierarchical selection criteria. MSP-HTPrimer produces a primer pair summary output table in TXT and HTML format for display and UCSC custom tracks for resulting primer pairs in GTF format.ConclusionsMSP-HTPrimer is an integrated, web-based, and high-throughput pipeline and has no limitation on the number and size of target sequences and designs MSP, BSP, pyrosequencing, COBRA, and MSRE assays. It is the only pipeline, which automatically designs primers on both genomic strands to increase the success rate. It is a standalone web-based pipeline, which is fully configured within a virtual machine and thus can be readily used without any configuration. We have experimentally validated primer pairs designed by our pipeline and shown a very high success rate of primer pairs: out of 66 BSP primer pairs, 63 were successfully validated without any further optimization step and using the same qPCR conditions. The MSP-HTPrimer pipeline is freely available from http://sourceforge.net/p/msp-htprimer.
BMC Clinical Pathology | 2011
Matthias Wielscher; Walter Pulverer; Johannes R. Peham; Manuela Hofner; Christine Rappaport; Christian F. Singer; Christof Jungbauer; Christa Nöhammer; Andreas Weinhäusel
BackgroundCirculating cell free DNA in serum as well as serum-autoantibodies and the serum proteome have great potential to contribute to early cancer diagnostics via non invasive blood tests. However, most DNA preparation protocols destroy the protein fraction and therefore do not allow subsequent protein analyses. In this study a novel approach based on methyl binding domain protein (MBD) is described to overcome the technical difficulties of combining DNA and protein analysis out of one single serum sample.MethodsSerum or plasma samples from 98 control individuals and 54 breast cancer patients were evaluated upon silica membrane- or MBD affinity-based DNA isolation via qPCR targeting potential DNA methylation markers as well as by protein-microarrays for tumor-autoantibody testing.ResultsIn control individuals, an average DNA level of 22.8 ± 25.7 ng/ml was detected applying the silica membrane based protocol and 8.5 ± 7.5 ng/ml using the MBD-approach, both values strongly dependent on the serum sample preparation methods used. In contrast to malignant and benign tumor serum samples, cell free DNA concentrations were significantly elevated in sera of metastasizing breast cancer patients. Technical evaluation revealed that serum upon MBD-based DNA isolation is suitable for protein-array analyses when data are consistent to untreated serum samples.ConclusionMBD affinity purification allows DNA isolations under native conditions retaining the protein function, thus for example enabling combined analyses of DNA methylation and autoantigene-profiles from the same serum sample and thereby improving minimal invasive diagnostics.