Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter S. Drisdell is active.

Publication


Featured researches published by Walter S. Drisdell.


Nature | 2015

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks

Thomas M. McDonald; Jarad A. Mason; Xueqian Kong; Eric D. Bloch; David Gygi; Alessandro Dani; Valentina Crocellà; Filippo Giordanino; Samuel O. Odoh; Walter S. Drisdell; Bess Vlaisavljevich; Allison L. Dzubak; Roberta Poloni; Sondre K. Schnell; Nora Planas; Kyuho Lee; Tod A. Pascal; Liwen F. Wan; David Prendergast; Jeffrey B. Neaton; Berend Smit; J. B. Kortright; Laura Gagliardi; Silvia Bordiga; Jeffrey A. Reimer; Jeffrey R. Long

The process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents. Here we show that diamine-appended metal-organic frameworks can behave as ‘phase-change’ adsorbents, with unusual step-shaped CO2 adsorption isotherms that shift markedly with temperature. Results from spectroscopic, diffraction and computational studies show that the origin of the sharp adsorption step is an unprecedented cooperative process in which, above a metal-dependent threshold pressure, CO2 molecules insert into metal-amine bonds, inducing a reorganization of the amines into well-ordered chains of ammonium carbamate. As a consequence, large CO2 separation capacities can be achieved with small temperature swings, and regeneration energies appreciably lower than achievable with state-of-the-art aqueous amine solutions become feasible. The results provide a mechanistic framework for designing highly efficient adsorbents for removing CO2 from various gas mixtures, and yield insights into the conservation of Mg2+ within the ribulose-1,5-bisphosphate carboxylase/oxygenase family of enzymes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets

Janel S. Uejio; Craig P. Schwartz; Andrew M. Duffin; Walter S. Drisdell; R. C. Cohen; Richard J. Saykally

We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger binding of the lighter metals, supporting recent results from simulations and other experiments. The carbon K-edge spectra of the acetate carbonyl feature centered near 290 eV clearly indicate a preferential interaction of sodium versus potassium, which was less apparent with formate. These results are in accord with the Law of Matching Water Affinities, relating relative hydration strengths of ions to their respective tendencies to form contact ion pairs. Density functional theory calculations of K-shell spectra support the experimental findings.


Energy and Environmental Science | 2015

Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy

Michael F. Lichterman; Shu Hu; Matthias H. Richter; Ethan J. Crumlin; Stephanus Axnanda; Marco Favaro; Walter S. Drisdell; Z. Hussain; Thomas Mayer; Bruce S. Brunschwig; Nathan S. Lewis; Zhi Liu; Hans Joachim Lewerenz

Photoelectrochemical (PEC) cells based on semiconductor/liquid interfaces provide a method of converting solar energy to electricity or fuels. Currently, the understanding of semiconductor/liquid interfaces is inferred from experiments and models. Operando ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) has been used herein to directly characterize the semiconductor/liquid junction at room temperature under real-time electrochemical control. X-ray synchrotron radiation in conjunction with AP-XPS has enabled simultaneous monitoring of the solid surface, the solid/electrolyte interface, and the bulk electrolyte of a PEC cell as a function of the applied potential, U. The observed shifts in binding energy with respect to the applied potential have directly revealed ohmic and rectifying junction behavior on metallized and semiconducting samples, respectively. Additionally, the non-linear response of the core level binding energies to changes in the applied electrode potential has revealed the influence of defect-derived electronic states on the Galvani potential across the complete cell.


Journal of the American Chemical Society | 2015

Graphite-Conjugated Pyrazines as Molecularly Tunable Heterogeneous Electrocatalysts

Tomohiro Fukushima; Walter S. Drisdell; Junko Yano; Yogesh Surendranath

Condensation of ortho-phenylenediamine derivatives with ortho-quinone moieties at edge planes of graphitic carbon generates graphite-conjugated pyrazines (GCPs) that are active for oxygen reduction electrocatalysis in alkaline aqueous electrolyte. Catalytic rates of oxygen reduction are positively correlated with the electrophilicity of the active site pyrazine unit and can be tuned by over 70-fold by appending electron-withdrawing substituents to the phenylenediamine precursors. Discrete molecular analogs containing pyrazine moieties display no activity above background under identical conditions. This simple bottom up method for constructing molecularly well-defined active sites on ubiquitous graphitic solids enables the rational design of tunable heterogeneous catalysts.


Proceedings of the National Academy of Sciences of the United States of America | 2009

On the evaporation of ammonium sulfate solution

Walter S. Drisdell; Richard J. Saykally; R. C. Cohen

Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 ± 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor–liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.


Advanced Materials | 2015

Bandgap Tunability in Sb‐Alloyed BiVO4 Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications

Anna Loiudice; Jie Ma; Walter S. Drisdell; Tracy M. Mattox; Jason K. Cooper; Timothy Thao; Cinzia Giannini; Junko Yano; Lin-Wang Wang; Ian D. Sharp; Raffaella Buonsanti

The challenge of fine compositional tuning and microstructure control in complex oxides is overcome by developing a general two-step synthetic approach. Antimony-alloyed bismuth vanadate, which is identified as a novel light absorber for solar fuel applications, is prepared in a wide compositional range. The bandgap of this quaternary oxide linearly decreases with the Sb content, in agreement with first-principles calculations.


Physical Chemistry Chemical Physics | 2013

Evaporation kinetics of aqueous acetic acid droplets: effects of soluble organic aerosol components on the mechanism of water evaporation

Kaitlin C. Duffey; Orion Shih; Nolan L. Wong; Walter S. Drisdell; Richard J. Saykally; R. C. Cohen

The presence of organic surfactants in atmospheric aerosol may lead to a depression of cloud droplet growth and evaporation rates affecting the radiative properties and lifetime of clouds. Both the magnitude and mechanism of this effect, however, remain poorly constrained. We have used Raman thermometry measurements of freely evaporating micro-droplets to determine evaporation coefficients for several concentrations of acetic acid, which is ubiquitous in atmospheric aerosol and has been shown to adsorb strongly to the air-water interface. We find no suppression of the evaporation kinetics over the concentration range studied (1-5 M). The evaporation coefficient determined for 2 M acetic acid is 0.53 ± 0.12, indistinguishable from that of pure water (0.62 ± 0.09).


Journal of the American Chemical Society | 2017

Operando Spectroscopic Analysis of CoP Films Electrocatalyzing the Hydrogen-Evolution Reaction

Fadl H. Saadi; Azhar I. Carim; Walter S. Drisdell; Sheraz Gul; Jack H. Baricuatro; Junko Yano; Manuel P. Soriaga; Nathan S. Lewis

Transition metal phosphides exhibit high catalytic activity toward the electrochemical hydrogen-evolution reaction (HER) and resist chemical corrosion in acidic solutions. For example, an electrodeposited CoP catalyst exhibited an overpotential, η, of -η < 100 mV at a current density of -10 mA cm-2 in 0.500 M H2SO4(aq). To obtain a chemical description of the material as-prepared and also while effecting the HER in acidic media, such electrocatalyst films were investigated using Raman spectroscopy and X-ray absorption spectroscopy both ex situ as well as under in situ and operando conditions in 0.500 M H2SO4(aq). Ex situ analysis using the tandem spectroscopies indicated the presence of multiple ordered and disordered phases that contained both near-zerovalent and oxidized Co species, in addition to reduced and oxygenated P species. Operando analysis indicated that the active electrocatalyst was primarily amorphous and predominantly consisted of near-zerovalent Co as well as reduced P.


Physical Chemistry Chemical Physics | 2015

Probing the mechanism of CO2 capture in diamine-appended metal–organic frameworks using measured and simulated X-ray spectroscopy

Walter S. Drisdell; Roberta Poloni; Thomas M. McDonald; Tod A. Pascal; Liwen F. Wan; C. Das Pemmaraju; Bess Vlaisavljevich; Samuel O. Odoh; Jeffrey B. Neaton; Jeffrey R. Long; David Prendergast; J. B. Kortright

Diamine-appended metal-organic frameworks display great promise for carbon capture applications, due to unusual step-shaped adsorption behavior that was recently attributed to a cooperative mechanism in which the adsorbed CO2 molecules insert into the metal-nitrogen bonds to form ordered ammonium carbamate chains [McDonald et al., Nature, 2015, 519, 303]. We present a detailed study of this mechanism by in situ X-ray absorption spectroscopy and density functional theory calculations. Distinct spectral changes at the N and O K-edges are apparent upon CO2 adsorption in both mmen-Mg2(dobpdc) and mmen-Mn2(dobpdc), and these are evaluated based upon computed spectra from three potential adsorption structures. The computations reveal that the observed spectral changes arise from specific electronic states that are signatures of a quasi-trigonal planar carbamate species that is hydrogen bonded to an ammonium cation. This eliminates two of the three structures studied, and confirms the insertion mechanism. We note the particular sensitivity of X-ray absorption spectra to the insertion step of this mechanism, underpinning the strength of the technique for examining subtle chemical changes upon gas adsorption.


Chemistry: A European Journal | 2015

Oxygen‐Atom Transfer Chemistry and Thermolytic Properties of a Di‐tert‐Butylphosphate‐Ligated Mn4O4 Cubane

Kurt M. Van Allsburg; Eitan Anzenberg; Walter S. Drisdell; Junko Yano; T. Don Tilley

[Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described.

Collaboration


Dive into the Walter S. Drisdell's collaboration.

Top Co-Authors

Avatar

David Prendergast

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. C. Cohen

University of California

View shared research outputs
Top Co-Authors

Avatar

Jared D. Smith

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey R. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marco Favaro

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ethan J. Crumlin

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge