Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter Sandtner is active.

Publication


Featured researches published by Walter Sandtner.


Proceedings of the National Academy of Sciences of the United States of America | 2008

S4-based voltage sensors have three major conformations

Carlos A. Villalba-Galea; Walter Sandtner; Dorine M. Starace; Francisco Bezanilla

Voltage sensors containing the charged S4 membrane segment display a gating charge vs. voltage (Q–V) curve that depends on the initial voltage. The voltage-dependent phosphatase (Ci-VSP), which does not have a conducting pore, shows the same phenomenon and the Q–V recorded with a depolarized initial voltage is more stable by at least 3RT. The leftward shift of the Q–V curve under prolonged depolarization was studied in the Ci-VSP by using electrophysiological and site-directed fluorescence measurements. The fluorescence shows two components: one that traces the time course of the charge movement between the resting and active states and a slower component that traces the transition between the active state and a more stable state we call the relaxed state. Temperature dependence shows a large negative enthalpic change when going from the active to the relaxed state that is almost compensated by a large negative entropic change. The Q–V curve midpoint measured for pulses that move the sensor between the resting and active states, but not long enough to evolve into the relaxed states, show a periodicity of 120°, indicating a 310 secondary structure of the S4 segment when determined under histidine scanning. We hypothesize that the S4 segment moves as a 310 helix between the resting and active states and that it converts to an α-helix when evolving into the relaxed state, which is most likely to be the state captured in the crystal structures.


Neuropharmacology | 2005

Serotonin-transporter mediated efflux: A pharmacological analysis of amphetamines and non-amphetamines

Birgit Hilber; Petra Scholze; Mario M. Dorostkar; Walter Sandtner; Marion Holy; Stefan Boehm; Ernst A. Singer; Harald H. Sitte

The physiological function of neurotransmitter transporter proteins like the serotonin transporter (SERT) is reuptake of neurotransmitter that terminates synaptic serotoninergic transmission. SERT can operate in reverse direction and be induced by SERT substrates including 5-HT, tyramine and the positively charged methyl-phenylpyridinium (MPP(+)), as well as the amphetamine derivatives para-chloroamphetamine (pCA) and methylene-dioxy-methamphetamine (MDMA). These substrates also induce inwardly directed sodium currents that are predominantly carried by sodium ions. Efflux via SERT depends on this sodium flux that is believed to be a prerequisite for outward transport. However, in recent studies, it has been suggested that substrates may be distinct in their properties to induce efflux. Therefore, the aim of the present study was a pharmacological characterization of different SERT substrates in uptake experiments, their abilities to induce transporter-mediated efflux and currents. In conclusion, the rank order of affinities in uptake and electrophysiological experiments correlate well, while the potencies of the amphetamine derivatives for the induction of efflux are clearly higher than those of the other substrates. These discrepancies can be only explained by mechanisms that can be induced by amphetamines. Therefore, based on our pharmacological observations, we conclude that amphetamines distinctly differ from non-amphetamine SERT substrates.


Journal of Biological Chemistry | 2012

The Mechanistic Basis for Noncompetitive Ibogaine Inhibition of Serotonin and Dopamine Transporters

Simon Bulling; Klaus Schicker; Yuan-Wei Zhang; Thomas Steinkellner; Thomas Stockner; Christian W. Gruber; Stefan Boehm; Michael Freissmuth; Gary Rudnick; Harald H. Sitte; Walter Sandtner

Background: Ibogaine is a noncompetitive inhibitor of SERT that stabilizes the transporter in an inward-open conformation. Results: Ibogaine binds to a site accessible from the cell exterior that does not overlap with the substrate-binding site. Conclusion: Ibogaine binds to a novel binding site on SERT and DAT. Significance: This study provides a mechanistic understanding of an unique inhibitor of SERT and DAT. Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study.


Journal of Biological Chemistry | 2012

Unifying Concept of Serotonin Transporter-associated Currents

Klaus Schicker; Zeljko Uzelac; Joan Gesmonde; Simon Bulling; Thomas Stockner; Michael Freissmuth; Stefan Boehm; Gary Rudnick; Harald H. Sitte; Walter Sandtner

Background: hSERT is a neurotransmitter transporter driven by ion gradients with electroneutral stoichiometry but rheogenic properties. Results: hSERT displays coupled and uncoupled currents. The uncoupled current depends on internal K+. Conclusion: The conducting state of hSERT is in equilibrium with an inward facing K+-bound state. Significance: This study provides a framework for exploring transporter-associated currents. Serotonin (5-HT) uptake by the human serotonin transporter (hSERT) is driven by ion gradients. The stoichiometry of transported 5-HT and ions is predicted to result in electroneutral charge movement. However, hSERT mediates a current when challenged with 5-HT. This discrepancy can be accounted for by an uncoupled ion flux. Here, we investigated the mechanistic basis of the uncoupled currents and its relation to the conformational cycle of hSERT. Our observations support the conclusion that the conducting state underlying the uncoupled ion flux is in equilibrium with an inward facing state of the transporter with K+ bound. We identified conditions associated with accumulation of the transporter in inward facing conformations. Manipulations that increased the abundance of inward facing states resulted in enhanced steady-state currents. We present a comprehensive kinetic model of the transport cycle, which recapitulates salient features of the recorded currents. This study provides a framework for exploring transporter-associated currents.


Neuropsychopharmacology | 2015

‘Second-Generation’ Mephedrone Analogs, 4-MEC and 4-MePPP, Differentially Affect Monoamine Transporter Function

Kusumika Saha; John S. Partilla; Kurt R Lehner; Amir Seddik; Thomas Stockner; Marion Holy; Walter Sandtner; Gerhard F. Ecker; Harald H. Sitte; Michael H. Baumann

The nonmedical use of synthetic cathinones is increasing on a global scale. 4-Methyl-N-methylcathinone (mephedrone) is a popular synthetic cathinone that is now illegal in the United States and other countries. Since the legislative ban on mephedrone, a number of ‘second-generation’ analogs have appeared in the street drug marketplace, including 4-methyl-N-ethylcathinone (4-MEC) and 4′-methyl-α-pyrrolidinopropiophenone (4-MePPP). Here we characterized the interactions of 4-MEC and 4-MePPP with transporters for 5-HT (SERT) and dopamine (DAT) using molecular, cellular, and whole-animal methods. In vitro transporter assays revealed that 4-MEC displays unusual ‘hybrid’ activity as a SERT substrate (ie, 5-HT releaser) and DAT blocker, whereas 4-MePPP is a blocker at both transporters but more potent at DAT. In vivo microdialysis experiments in rat brain demonstrated that 4-MEC (1–3 mg/kg, i.v.) produced large increases in extracellular 5-HT, small increases in dopamine, and minimal motor stimulation. In contrast, 4-MePPP (1–3 mg/kg, i.v.) produced selective increases in dopamine and robust motor stimulation. Consistent with its activity as a SERT substrate, 4-MEC evoked inward current in SERT-expressing Xenopus oocytes, whereas 4-MePPP was inactive in this regard. To examine drug–transporter interactions at the molecular level, we modeled the fit of 4-MEC and 4-MePPP into the binding pockets for DAT and SERT. Subtle distinctions in ligand–transporter binding were found that account for the differential effects of 4-MEC and 4-MePPP at SERT. Collectively, our results provide key information about the pharmacology of newly emerging mephedrone analogs, and give clues to structural requirements that govern drug selectivity at DAT vs SERT.


Journal of Biological Chemistry | 2011

Ouabain binding site in a functioning Na+/K+ ATPase

Walter Sandtner; Bernhard Egwolf; Fatemeh Khalili-Araghi; Jorge E. Sánchez-Rodríguez; Benoît Roux; Francisco Bezanilla; Miguel Holmgren

Background: Ouabain binds at the permeation pathway of the Na+/K+ ATPase. Results: We have identified two binding sites for ouabain along the ion conductive pathway of the Na+/K+ pump that are mutually exclusive and differ in their affinities by about an order of magnitude. Conclusion: Ouabain reaches its high affinity binding site at the inner end of the permeation pathway by a sequential mechanism. Significance: This work unifies all available functional and structural data on the interactions of ouabain with the Na+/K+ pump. The Na+/K+ ATPase is an almost ubiquitous integral membrane protein within the animal kingdom. It is also the selective target for cardiotonic derivatives, widely prescribed inhibitors for patients with heart failure. Functional studies revealed that ouabain-sensitive residues distributed widely throughout the primary sequence of the protein. Recently, structural work has brought some consensus to the functional observations. Here, we use a spectroscopic approach to estimate distances between a fluorescent ouabain and a lanthanide binding tag (LBT), which was introduced at five different positions in the Na+/K+ ATPase sequence. These five normally functional LBT-Na+/K+ ATPase constructs were expressed in the cell membrane of Xenopus laevis oocytes, operating under physiological internal and external ion conditions. The spectroscopic data suggest two mutually exclusive distances between the LBT and the fluorescent ouabain. From the estimated distances and using homology models of the LBT-Na+/K+ ATPase constructs, approximate ouabain positions could be determined. Our results suggest that ouabain binds at two sites along the ion permeation pathway of the Na+/K+ ATPase. The external site (low apparent affinity) occupies the same region as previous structural findings. The high apparent affinity site is, however, slightly deeper toward the intracellular end of the protein. Interestingly, in both cases the lactone ring faces outward. We propose a sequential ouabain binding mechanism that is consistent with all functional and structural studies.


The Journal of General Physiology | 2013

Sensing charges of the Ciona intestinalis voltage-sensing phosphatase

Carlos A. Villalba-Galea; Ludivine Frezza; Walter Sandtner; Francisco Bezanilla

Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.


Journal of Biological Chemistry | 2014

The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport

Bruce Felts; Akula Bala Pramod; Walter Sandtner; Nathan Burbach; Simon Bulling; Harald H. Sitte; L. Keith Henry

Background: The Na+/Cl−-dependent serotonin transporter contains two putative Na+-binding sites (Na1 and Na2). Results: Mutations at Na1, but not Na2, allow Ca2+ to replace Na+ and alter the conducting properties of the transporter. Conclusion: Ca2+ binds at Na1, but in the Na1 mutant, it does not appear to be transported. Significance: This work uncovers distinct roles of the Na+-binding sites for serotonin transporter function. Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl−, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites.


British Journal of Pharmacology | 2014

A quantitative model of amphetamine action on the 5‐HT transporter

Walter Sandtner; Diethart Schmid; Klaus Schicker; Klaus Gerstbrein; Xaver Koenig; Felix P. Mayer; Stefan Boehm; Michael Freissmuth; Harald H. Sitte

Amphetamines bind to the plasmalemmal transporters for the monoamines dopamine (DAT), noradrenaline (NET) and 5‐HT (SERT); influx of amphetamine leads to efflux of substrates. Various models have been proposed to account for this amphetamine‐induced reverse transport in mechanistic terms. A most notable example is the molecular stent hypothesis, which posits a special amphetamine‐induced conformation that is not likely in alternative access models of transport. The current study was designed to evaluate the explanatory power of these models and the molecular stent hypothesis.


Addiction Biology | 2014

Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk.

Xaver Koenig; Michael Kovar; Stefan Boehm; Walter Sandtner; Karlheinz Hilber

Ibogaine, an alkaloid derived from the African shrub Tabernanthe iboga, has shown promising anti‐addictive properties in animals. Anecdotal evidence suggests that ibogaine is also anti‐addictive in humans. Thus, it alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug, and despite evidence that ibogaine may disturb the rhythm of the heart, this alkaloid is currently used as an anti‐addiction drug in alternative medicine. Here, we report that therapeutic concentrations of ibogaine reduce currents through human ether‐a‐go‐go‐related gene potassium channels. Thereby, we provide a mechanism by which ibogaine may generate life‐threatening cardiac arrhythmias.

Collaboration


Dive into the Walter Sandtner's collaboration.

Top Co-Authors

Avatar

Harald H. Sitte

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Freissmuth

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Thomas Stockner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karlheinz Hilber

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Azmat Sohail

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Klaus Schicker

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Hannes Todt

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Peter S. Hasenhuetl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Xaver Koenig

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge