Walter Stockinger
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter Stockinger.
Cell | 1999
Marion Trommsdorff; Michael Gotthardt; Thomas Hiesberger; John M. Shelton; Walter Stockinger; Johannes Nimpf; Robert E. Hammer; James A. Richardson; Joachim Herz
Layering of neurons in the cerebral cortex and cerebellum requires Reelin, an extracellular matrix protein, and mammalian Disabled (mDab1), a cytosolic protein that activates tyrosine kinases. Here, we report the requirement for two other proteins, cell surface receptors termed very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2). Both receptors can bind mDab1 on their cytoplasmic tails and are expressed in cortical and cerebellar layers adjacent to layers that express Reelin. mDab1 expression is upregulated in knockout mice that lack both VLDLR and ApoER2. Inversion of cortical layers and absence of cerebellar foliation in these animals precisely mimic the phenotype of mice lacking Reelin or mDab1. These findings suggest that VLDLR and ApoER2 participate in transmitting the extracellular Reelin signal to intracellular signaling processes initiated by mDab1.
Journal of Biological Chemistry | 2000
Michael Gotthardt; Marion Trommsdorff; Matthew F. Nevitt; John M. Shelton; James A. Richardson; Walter Stockinger; Johannes Nimpf; Joachim Herz
The members of the low density lipoprotein (LDL) receptor gene family bind a broad spectrum of extracellular ligands. Traditionally, they had been regarded as mere cargo receptors that promote the endocytosis and lysosomal delivery of these ligands. However, recent genetic experiments in mice have revealed critical functions for two LDL receptor family members, the very low density lipoprotein receptor and the apoE receptor-2, in the transmission of extracellular signals and the activation of intracellular tyrosine kinases. This process regulates neuronal migration and is crucial for brain development. Signaling through these receptors requires the interaction of their cytoplasmic tails with the intracellular adaptor protein Disabled-1 (DAB1). Here, we identify an extended set of cytoplasmic proteins that might also participate in signal transmission by the LDL receptor gene family. Most of these novel proteins are adaptor or scaffold proteins that contain PID or PDZ domains and function in the regulation of mitogen-activated protein kinases, cell adhesion, vesicle trafficking, or neurotransmission. We show that binding of DAB1 interferes with receptor internalization suggesting a mechanism by which signaling through this class of receptors might be regulated. Taken together, these findings imply much broader physiological functions for the LDL receptor family than had previously been appreciated. They form the basis for the elucidation of the molecular pathways by which cells respond to the diversity of ligands that bind to these multifunctional receptors on the cell surface.
Journal of Biological Chemistry | 2000
Walter Stockinger; Christian Brandes; Daniela Fasching; Marcela Hermann; Michael Gotthardt; Joachim Herz; Wolfgang J. Schneider; Johannes Nimpf
Correct positioning of neurons during embryonic development of the brain depends, among other processes, on the proper transmission of the reelin signal into the migrating cells via the interplay of its receptors with cytoplasmic signal transducers. Cellular components of this signaling pathway characterized to date are cell surface receptors for reelin like apolipoprotein E receptor 2 (ApoER2), very low density lipoprotein receptor (VLDLR), and cadherin-related neuronal receptors, and intracellular components like Disabled-1 and the nonreceptor tyrosine kinase Fyn, which bind to the intracellular domains of the ApoER2 and VLDL receptor or of cadherin-related neuronal receptors, respectively. Here we show that ApoER2, but not VLDLR, also binds the family of JNK-interacting proteins (JIPs), which act as molecular scaffolds for the JNK-signaling pathway. The ApoER2 binding domain on JIP-2 does not overlap with the binding sites for MLK3, MKK7, and JNK. These results suggest that ApoER2 is able to assemble a multiprotein complex containing Disabled-1 and JIPs, together with their binding partners, to the cell surface of neurons. This complex might participate in ApoER2-specific reelin signaling and thus would explain the different phenotype of mice lacking the ApoER2 from that of VLDLR-deficient mice.
The EMBO Journal | 2002
Walter Stockinger; Beate Sailler; Vera Strasser; Burgi Recheis; Daniela Fasching; Larissa Kahr; Wolfgang J. Schneider; Johannes Nimpf
Sorting nexins (SNXs) comprise a family of proteins characterized by the presence of a phox‐homology domain, which mediates the association of these proteins with phosphoinositides and recruits them to specific membranes or vesicular structures within cells. Although only limited information about SNXs and their functions is available, they seem to be involved in membrane trafficking and sorting processes by directly binding to target proteins such as certain growth factor receptors. We show that SNX17 binds to the intracellular domain of some members of the low‐density lipoprotein receptor (LDLR) family such as LDLR, VLDLR, ApoER2 and LDLR‐related protein. SNX17 resides on distinct vesicular structures partially overlapping with endosomal compartments characterized by the presence of EEA1 and rab4. Using rhodamine‐labeled LDL, it was possible to demonstrate that during endocytosis, LDL passes through SNX17‐positive compartments. Functional studies on the LDLR pathway showed that SNX17 enhances the endocytosis rate of this receptor. Our results identify SNX17 as a novel adaptor protein for LDLR family members and define a novel mechanism for modulation of their endocytic activity.
Journal of Biological Chemistry | 1998
Walter Stockinger; Elke Hengstschläger-Ottnad; Sabine Novak; Andrew Matus; Manfred Hüttinger; Jan Bauer; Hans Lassmann; Wolfgang J. Schneider; Johannes Nimpf
LR7/8B is a member of the low density lipoprotein receptor gene family that is specifically synthesized in the brain. Here we have functionally expressed in 293 cells the splice variant harboring eight ligand binding repeats (LR8B). As assessed by confocal microscopy, the expressed receptor is localized to the plasma membrane. Importantly, in cell binding experiments, we demonstrate that this protein is a receptor for activated α2-macroglobulin. Because to date low density lipoprotein receptor-related protein (LRP) has been shown to be the only α2-macroglobulin receptor in brain, we became interested in the expression pattern of both proteins at the cellular level in the brain. LR7/8B is expressed in large neurons and Purkinje cells of the cerebellum and in cells constituting brain barrier systems such as the epithelial cells of the choroid plexus, the arachnoidea, and the endothelium of penetrating blood vessels. Anti-LR7/8B antibody stains the plasma membrane, dendrites, and vesicular structures close to the cell membrane of neurons, especially of Purkinje cells. In contrast, LRP is present in patchy regions around large neurons and most prominently in the glomeruli of the stratum granulare of the cerebellum. This suggests that, contrary to LR7/8B, LRP is expressed in synaptic regions of the neurons; furthermore, there is a striking difference in the expression patterns of LR7/8B and LRP in the choroid plexus. Whereas LRP shows baso-lateral and apical localization in the epithelial cells, LR7/8B is restricted to the apical cell aspect facing the cerebrospinal fluid. Finally, these studies were extended to cultured primary rat neurons, where double immunofluorescence labeling with anti-LR7/8B and anti-microtubuli-associated protein 2 (MAP2) confirmed the somatodendritic expression of the receptor. Based upon these data, we propose that LR7/8B is involved in the clearance of α2-macroglobulin·proteinase complexes and/or of other substrates bound to α2-macroglobulin from the cerebrospinal fluid and from the surface of neurons.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Vishal Trivedi; Shao C. Zhang; Adam B. Castoreno; Walter Stockinger; Eugenie C. Shieh; Jatin M. Vyas; Eva-Maria Frickel; Axel Nohturfft
An important role of IgG antibodies in the defense against microbial infections is to promote the ingestion and killing of microbes by phagocytes. Here, we developed in vivo and in vitro approaches to ask whether opsonization of particles with IgG enhances intracellular targeting of lysosomes to phagosomes. To eliminate the effect of IgG on the ingestion process, cells were exposed to latex beads at 15–20°C, which allows engulfment of both IgG-coated and uncoated beads but prevents the fusion of lysosomes with phagosomes. Upon shifting the temperature to 37°C, phagosomes containing IgG beads matured significantly faster into phagolysosomes as judged by colocalization with lysosomal markers. The IgG effect was independent of other particle-associated antigens or serum factors. Lysosome/phagosome attachment was also quantified biochemically with a cytosol-dependent scintillation proximity assay. Interactions were enhanced significantly in reactions containing cytosol from mouse macrophages that had been exposed to IgG-coated beads, indicating that IgG signaling modulates the cytosolic-targeting machinery. Similar results were obtained with cytosol from primary human monocytes, human U-937 histiocytic lymphoma cells and from Chinese hamster ovary (CHO) cells transfected with a human IgG (Fcγ) receptor. IgG-induced activation is shown to affect the actin-dependent tethering/docking stage of the targeting process and to proceed through a pathway involving protein kinase C. These results provide a rare example of an extracellular signal controlling membrane targeting on the level of tethering and docking. We propose that this pathway contributes to the role of antibodies in the protection against microbial infections.
Methods of Molecular Biology | 2008
Walter Stockinger; Axel Nohturfft
Phagocytosis of microorganisms, senescent cells, apoptotic bodies, and effete tissue material is an important process in host defense and tissue homeostasis. A method is described to measure, in living macrophages, the kinetics of particle engulfment and lysosome/phagosome targeting. Plasma membranes or lysosomes are labeled with tritiated lipids, followed by exposure of cells to scintillant microbeads. Because of the short range of tritium beta-particles, geometric factors, and the confinement of lipids to membranes, scintillation can only be elicited by tracer molecules in membranes immediately vicinal to the scintillant. When the plasma membrane.is labeled with [(3)H]cholesterol, a signal is produced on bead-cell contact and engulfment and then reaches steady state within 45 min. When lysosomes are labeled with nonhydrolyzable [(3)H]cholesterol oleyl ether, scintillation requires intracellular lysosome/phagosome attachment or fusion, and steady state is attained only after several hours. The live-cell scintillation proximity approach is useful for examining the effects of pharmacological and genetic manipulations on particle uptake and on lysosome/phagosome targeting.
Journal of Biological Chemistry | 2001
Christian Brandes; Larissa Kahr; Walter Stockinger; Thomas Hiesberger; Wolfgang J. Schneider; Johannes Nimpf
Proceedings of the National Academy of Sciences of the United States of America | 2005
Adam B. Castoreno; Yan Wang; Walter Stockinger; Larissa A. Jarzylo; Hong Du; Joanne Pagnon; Eugenie C. Shieh; Axel Nohturfft
Genomics | 1997
Christian Brandes; Sabine Novak; Walter Stockinger; Joachim Herz; Wolfgang J. Schneider; Johannes Nimpf