Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter W. Immerzeel is active.

Publication


Featured researches published by Walter W. Immerzeel.


Science | 2010

Climate Change Will Affect the Asian Water Towers

Walter W. Immerzeel; Ludovicus P. H. van Beek; Marc F. P. Bierkens

Towering Figures The Tibetan plateau and adjacent mountain ranges are the source areas of the five major rivers of Asia. Climate change promises to affect both precipitation patterns and glacial melting in the region, which could have marked impacts on river flows and on associated agriculture. Immerzeel et al. (p. 1382) analyzed the relative importance of glacial meltwater and rainfall in the region in order to determine how the rivers depend on different sources of water, and how the river basins may be affected by climate change. Climate change is likely to affect water availability in the river basins in substantial but diverse ways, which may threaten the food security of tens of millions of people. Climate change will cause substantial but diverse changes in water availability in the major river basins of Southeast Asia. More than 1.4 billion people depend on water from the Indus, Ganges, Brahmaputra, Yangtze, and Yellow rivers. Upstream snow and ice reserves of these basins, important in sustaining seasonal water availability, are likely to be affected substantially by climate change, but to what extent is yet unclear. Here, we show that meltwater is extremely important in the Indus basin and important for the Brahmaputra basin, but plays only a modest role for the Ganges, Yangtze, and Yellow rivers. A huge difference also exists between basins in the extent to which climate change is predicted to affect water availability and food security. The Brahmaputra and Indus basins are most susceptible to reductions of flow, threatening the food security of an estimated 60 million people.


Climatic Change | 2012

Hydrological response to climate change in a glacierized catchment in the Himalayas

Walter W. Immerzeel; L.P.H. van Beek; Markus Konz; Arun B. Shrestha; Marc F. P. Bierkens

The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high resolution combined cryospheric hydrological model was developed and calibrated that explicitly simulates glacier evolution and all major hydrological processes. The model was used to assess the future development of the glaciers and the runoff using an ensemble of downscaled climate model data in the Langtang catchment in Nepal. The analysis shows that both temperature and precipitation are projected to increase which results in a steady decline of the glacier area. The river flow is projected to increase significantly due to the increased precipitation and ice melt and the transition towards a rain river. Rain runoff and base flow will increase at the expense of glacier runoff. However, as the melt water peak coincides with the monsoon peak, no shifts in the hydrograph are expected.


Science | 2016

Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake

Jeffrey S. Kargel; Gregory J. Leonard; Dan H. Shugar; Umesh K. Haritashya; A. Bevington; Eric J. Fielding; Koji Fujita; M. Geertsema; Evan S. Miles; Jakob F. Steiner; E. Anderson; Samjwal Ratna Bajracharya; G. W. Bawden; D. F. Breashears; Alton C. Byers; B. Collins; M. R. Dhital; Andrea Donnellan; T. L. Evans; M. L. Geai; M. T. Glasscoe; D. Green; Deo Raj Gurung; R. Heijenk; A. Hilborn; Kenneth W. Hudnut; C. Huyck; Walter W. Immerzeel; Jiang Liming; R. Jibson

Nepals quake-driven landslide hazards Large earthquakes can trigger dangerous landslides across a wide geographic region. The 2015 Mw 7.8 Gorhka earthquake near Kathmandu, Nepal, was no exception. Kargal et al. used remote observations to compile a massive catalog of triggered debris flows. The satellite-based observations came from a rapid response team assisting the disaster relief effort. Schwanghart et al. show that Kathmandu escaped the historically catastrophic landslides associated with earthquakes in 1100, 1255, and 1344 C.E. near Nepals second largest city, Pokhara. These two studies underscore the importance of determining slope stability in mountainous, earthquake-prone regions. Science, this issue p. 10.1126/science.aac8353; see also p. 147 Satellite imaging isolated hazard potential for earthquake-triggered landslides after the 2015 Gorkha earthquake in Nepal. INTRODUCTION On 25 April 2015, the Gorkha earthquake [magnitude (M) 7.8] struck Nepal, followed by five aftershocks of ≥M 6.0 until 10 June 2015. The earthquakes killed ~9000 people and severely damaged a 550 by 200 km region in Nepal and neighboring countries. Some mountain villages were completely destroyed, and the remote locations, blocked roads, and landslide-dammed rivers prevented ground access to many areas. RATIONALE Our “Volunteer Group” of scientists from nine nations, motivated by humanitarian needs, focused on satellite-based systematic mapping and analysis of earthquake-induced geohazards. We provided information to relief and recovery officials as emergency operations were occurring, while supported by one of the largest-ever NASA-led campaigns of responsive satellite data acquisitions over a vast disaster zone. Our analysis of geohazards distribution allowed evaluation of geomorphic, tectonic, and lithologic controls on earthquake-induced landsliding, process mechanisms, and hazard process chains, particularly where they affected local populations. RESULTS We mapped 4312 coseismic and postseismic landslides. Their distribution shows positive associations with slope and shaking intensity. The highest areal densities of landslides are developed on the downdropped northern tectonic block, which is likely explained by momentary reduction of the normal stress along planes of weakness during downward acceleration. The two largest shocks bracket the high-density landslide distribution, the largest magnitudes of the surface displacement field, and highest peak ground accelerations (PGAs). Landslides are heavily concentrated where PGA was >0.6g and slope is >30°. Additional controls on landslide occurrence are indicated by their clustering near earthquake epicenters and within specific lithologic units. The product of PGA and the sine of surface slope (defined as the landslide susceptibility index) is a good indicator of where most landslides occurred. A tail of the statistical distributions of landslides extends to low values of the landslide susceptibility index. Slight earthquake shaking affected vulnerable materials hanging on steep slopes—such as ice, snow, and glacial debris—and moderate to strong shaking affected poorly consolidated sediments deposited in low-sloping river valleys, which were already poised near a failure threshold. In the remote Langtang Valley, some of the most concentrated destruction and losses of life outside the Kathmandu Valley were directly due to earthquake-induced landslides and air blasts. Complex seismic wave interactions and wave focusing may have caused ridgetop shattering and landslides near Langtang but reduced direct shaking damage on valley floors and at glacial lakes. CONCLUSION The Gorkha earthquake took a tremendous, tragic toll on human lives and culture. However, fortunately no damaging earthquake-caused glacier lake outburst floods were observed by our satellite analysis. The total number of landslides was far fewer than those generated by comparable earthquakes elsewhere, probably because of a lack of surface ruptures, the concentration of deformation along the subsurface thrust fault at 10 to 15 km depth, and the regional dominance of competent high-grade metamorphic and intrusive igneous rock types. Landslide distribution and effects of a huge landslide. (A) Landslides (purple dots) are concentrated mostly north of the tectonic hinge-line. Also shown are the epicenters of the main shock and largest aftershock. Displacements are from the JAXA ALOS-2 ScanSAR interferogram (21 Feb and 2 May 2015 acquisitions). (B and C) Before-and-after photographs obtained by D. Breashears in Langtang Valley showing complete destruction of a large part of Langtang village by a huge landslide. The Gorkha earthquake (magnitude 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9000 people and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes’ induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision-makers. We mapped 4312 coseismic and postseismic landslides. We also surveyed 491 glacier lakes for earthquake damage but found only nine landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.


Water Resources Research | 2014

The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas

Walter W. Immerzeel; Lene Petersen; Silvan Ragettli; Francesca Pellicciotti

The performance of glaciohydrological models which simulate catchment response to climate variability depends to a large degree on the data used to force the models. The forcing data become increasingly important in high-elevation, glacierized catchments where the interplay between extreme topography, climate, and the cryosphere is complex. It is challenging to generate a reliable forcing data set that captures this spatial heterogeneity. In this paper, we analyze the results of a 1 year field campaign focusing on air temperature and precipitation observations in the Langtang valley in the Nepalese Himalayas. We use the observed time series to characterize both temperature lapse rates (LRs) and precipitation gradients (PGs). We study their spatial and temporal variability, and we attempt to identify possible controlling factors. We show that very clear LRs exist in the valley and that there are strong seasonal differences related to the water vapor content in the atmosphere. Results also show that the LRs are generally shallower than the commonly used environmental lapse rates. The analysis of the precipitation observations reveals that there is great variability in precipitation over short horizontal distances. A uniform valley wide PG cannot be established, and several scale-dependent mechanisms may explain our observations. We complete our analysis by showing the impact of the observed LRs and PGs on the outputs of the TOPKAPI-ETH glaciohydrological model. We conclude that LRs and PGs have a very large impact on the water balance composition and that short-term monitoring campaigns have the potential to improve model quality considerably.


Mountain Research and Development | 2012

Challenges and Uncertainties in Hydrological Modeling of Remote Hindu Kush-Karakoram- Himalayan (HKH) Basins: Suggestions for Calibration Strategies

Francesca Pellicciotti; Cyrill Buergi; Walter W. Immerzeel; Markus Konz; Arun B. Shrestha

Abstract Assessment of water resources from remote mountainous catchments plays a crucial role for the development of rural areas in or in the vicinity of mountain ranges. The scarcity of data, however, prevents the application of standard approaches that are based on data-driven models. The Hindu Kush–Karakoram–Himalaya mountain range is a crucial area in terms of water resources, but our understanding of the response of its high-elevation catchments to a changing climate is hindered by lack of hydro-meteorological and cryospheric data. Hydrological modeling is challenging here because internal inconsistencies—such as an underestimation of precipitation input that can be compensated for by an overestimation of meltwater—might be hidden due to the complexity of feedback mechanisms that govern melt and runoff generation in such basins. Data scarcity adds to this difficulty by preventing the application of systematic calibration procedures that would allow identification of the parameter set that could guarantee internal consistency in the simulation of the single hydrological components. In this work, we use simulations from the Hunza River Basin in the Karakoram region obtained with the hydrological model TOPKAPI to quantify the predictive power of discharge and snow-cover data sets, as well as the combination of both. We also show that short-term measurements of meteorological variables such as radiative fluxes, wind speed, relative humidity, and air temperature from glacio-meteorological experiments are crucial for a correct parameterization of surface melt processes. They enable detailed simulations of the energy fluxes governing glacier–atmosphere interaction and the resulting ablation through energy-balance modeling. These simulations are used to derive calibrated parameters for the simplified snow and glacier routines in TOPKAPI. We demonstrate that such parameters are stable in space and time in similar climatic regions, thus reducing the number of parameters requiring calibration.


Mountain Research and Development | 2012

Glaciers as a Proxy to Quantify the Spatial Distribution of Precipitation in the Hunza Basin

Walter W. Immerzeel; Francesca Pellicciotti; Arun B. Shrestha

Abstract Accurate quantification of the spatial distribution of precipitation in mountain regions is crucial for assessments of water resources and for the understanding of high-altitude hydrology, yet it is one of the largest unknowns due to the lack of high-altitude observations. The Hunza basin in Pakistan contains very large glacier systems, which, given the melt, cannot persist unless precipitation (snow input) is much higher than what is observed at the meteorological stations, mostly located in mountain valleys. Several studies, therefore, suggest strong positive vertical precipitation lapse rates; in the present study, we quantify this lapse rate by using glaciers as a proxy. We assume a neutral mass balance for the glaciers for the period from 2001 to 2003, and we inversely model the precipitation lapse by balancing the total accumulation in the catchment area and the ablation over the glacier area for the 50 largest glacier systems in the Hunza basin in the Karakoram. Our results reveal a vertical precipitation lapse rate that equals 0.21 ± 0.12% m−1, with a maximum precipitation at an elevation of 5500 masl. We showed that the total annual basin precipitation (828 mm) is 260% higher than what is estimated based on interpolated observations (319 mm); this has major consequences for hydrological modeling and water resource assessments in general. Our results were validated by using previously published studies on individual glaciers as well as the water balance of the Hunza basin. The approach is more widely applicable in mountain ranges where precipitation measurements at high altitude are lacking.


International Journal of Remote Sensing | 2005

Understanding precipitation patterns and land use interaction in Tibet using harmonic analysis of SPOT VGT‐S10 NDVI time series

Walter W. Immerzeel; Roberto Quiroz; S.M. de Jong

Time series analysis of Normalized Difference Vegetation Index (NDVI) imagery is a powerful tool in studying land use and precipitation interaction in data‐scarce and inaccessible areas. The Fast Fourier Transform (FFT) was applied to the annual time series of 36 average dekadal NDVI images. The dekadal annual average pattern was calculated from 189 NDVI images from April 1998 to June 2003 acquired with the VEGETATION instruments of the SPOT‐4 and SPOT‐5 satellites in Tibet. It is shown that the first two harmonic terms of a Fourier series suffice to distinguish between land use classes. The results indicate that the highest biomass production occurs before the monsoon peak. Regression analysis with 15 meteorological stations has shown that the total amount of precipitation during the growing season shows the strongest relation with the sum of the amplitudes of the first two harmonic terms (R 2 = 0.72). Inter‐annual NDVI variation based on Fourier‐transformed time series was studied and it was shown that, early in the season, the expected NDVI behaviour of the up‐coming season could be forecast; if linked to food production this might provide a robust early warning system. The most important conclusion from this work is that harmonic time series analysis yields more reliable results than ordinary time series analysis.


Water Resources Research | 2012

Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

Wim G.M. Bastiaanssen; M.J.M. Cheema; Walter W. Immerzeel; I. J. Miltenburg; H. Pelgrum

estimated as being 112 Wm � 2 . The basin average sensible, latent and soil heat fluxes were estimated to be 80, 32, and 0 Wm � 2 , respectively. The average evapotranspiration (ET) and evaporative fraction were 1.2 mm d � 1 and 0.28, respectively. The basin wide ET was 496 6 16.8 km 3 yr � 1 . Monte Carlo analysis have indicated 3.4% error at 95% confidence interval for a dominant land use class. Results compared well with previously conducted soil moisture, lysimeter and Bowen ratio measurements at field scale (R 2 ¼ 0.70; RMSE ¼ 0.45 mm d � 1 ; RE ¼ –11.5% for annual ET). ET results were also compared against earlier remote sensing and modeling studies for various regions and provinces in Pakistan (R 2 ¼ 0.76; RMSE ¼ 0.29 mmd � 1 ;R E¼ 6.5% for annual ET). The water balance for all irrigated areas together as one total system in Pakistan and India (26.02 million ha) show a total ET value that is congruent with the ET value from the ETLook surface energy balance computations. An unpublished validation of the same ETLook model for 23 jurisdictional areas covering the entire Australian continent showed satisfactory results given the quality of the watershed data and the diverging physiographic and climatic conditions (R 2 ¼ 0.70; RMSE ¼ 0.31 mmd � 1 ;R E¼ –2.8% for annual ET). Eight day values of latent heat fluxes in Heibei (China) showed a good resemblance (R 2 ¼ 0.92; RMSE ¼ 0.04 mm d � 1 ;R E¼ 9.5% for annual ET). It is concluded that ETLook is a novel model that can be operationalized further—especially after improving the preprocessing of spaceborne soil moisture data. This preprocessing includes (1) downscaling of topsoil moisture from 25 to 1 km pixels, and (2) translation of topsoil moisture into subsoil moisture values.


Mountain Research and Development | 2012

Climate Change Impacts on Glacier Hydrology and River Discharge in the Hindu Kush – Himalayas A Synthesis of the Scientific Basis

James Miller; Walter W. Immerzeel; Gwyn Rees

Abstract Rising temperatures and changing precipitation patterns across the Hindu Kush–Himalaya (HKH) region resulting from climate change have an influence on water resource availability and food security for the downstream population. This review seeks to objectively assess the available evidence of the impacts of climate change on glacier hydrology and the wider implications upon water resources within the Indus, Ganges, and Brahmaputra basins. Glacier meltwater contribution to river flows is scale dependent and varies considerably across the east–west climatic zones of the HKH. For the Ganges and Brahmaputra this contribution is estimated to be significantly less than for the Indus to the west, with summer monsoon rains dominating flows from central and easterly areas, whereas meltwater remains a significant contributor to downstream flow of westerly basins, which receive most precipitation during winter. No corroborated trends exist in observed discharge for any basin, and such analyses are hindered by a lack of good-quality long-term data. Predicted increases in temperature will drive increased shrinkage of glaciers, leading to initial increases in meltwater produced, followed by subsequent declines with reduced glacier mass. The impacts of such changes are predicted to be minimal for the overall discharge of the Ganges and Brahmaputra, where increases in rainfall may in fact lead to increased flows but with greater variability. Within the Indus basin, reduced meltwater will have significant impacts upon available runoff; however, increased uncertainties surrounding precipitation and socioeconomic changes limit any conclusive assessment of how water availability will be affected; moreover, seasonality of runoff may be a more important factor. Scientific challenges and research recommendations are identified for the region. This review proposes the need for the scientific evidence pertaining to the regions glacier systems to be approached objectively in the future, such that a robust assessment of change can be attained.


Ground Water | 2014

Spatial Quantification of Groundwater Abstraction in the Irrigated Indus Basin

M.J.M. Cheema; Walter W. Immerzeel; Wim G.M. Bastiaanssen

Groundwater abstraction and depletion were assessed at a 1-km resolution in the irrigated areas of the Indus Basin using remotely sensed evapotranspiration (ET) and precipitation; a process-based hydrological model and spatial information on canal water supplies. A calibrated Soil and Water Assessment Tool (SWAT) model was used to derive total annual irrigation applied in the irrigated areas of the basin during the year 2007. The SWAT model was parameterized by station corrected precipitation data (R) from the Tropical Rainfall Monitoring Mission, land use, soil type, and outlet locations. The model was calibrated using a new approach based on spatially distributed ET fields derived from different satellite sensors. The calibration results were satisfactory and strong improvements were obtained in the Nash-Sutcliffe criterion (0.52 to 0.93), bias (-17.3% to -0.4%), and the Pearson correlation coefficient (0.78 to 0.93). Satellite information on R and ET was then combined with model results of surface runoff, drainage, and percolation to derive groundwater abstraction and depletion at a nominal resolution of 1 km. It was estimated that in 2007, 68 km³ (262 mm) of groundwater was abstracted in the Indus Basin while 31 km³ (121 mm) was depleted. The mean error was 41 mm/year and 62 mm/year at 50% and 70% probability of exceedance, respectively. Pakistani and Indian Punjab and Haryana were the most vulnerable areas to groundwater depletion and strong measures are required to maintain aquifer sustainability.

Collaboration


Dive into the Walter W. Immerzeel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph M. Shea

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Peter Droogers

International Water Management Institute

View shared research outputs
Top Co-Authors

Avatar

Evan S. Miles

Scott Polar Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arun B. Shrestha

International Centre for Integrated Mountain Development

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge