Walter W. Steiner
Niagara University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walter W. Steiner.
Molecular Microbiology | 1999
Walter W. Steiner; Guowen Liu; William D. Donachie; Peter L. Kuempel
Chromosome dimers, formed by homologous recombination between sister chromosomes, normally require cell division to be resolved into monomers by site‐specific recombination at the dif locus of Escherichia coli. We report here that it is not in fact cell division per se that is required for dimer resolution but the action of the cytoplasmic domain of FtsK, which is a bifunctional protein required both for cell division and for chromosome partition.
Molecular Cell | 2002
Jennifer A. Young; Randall W. Schreckhise; Walter W. Steiner; Gerald R. Smith
DNA breakage is intimately associated with meiotic recombination in the fission yeast Schizosaccharomyces pombe. Sites of prominent DNA breakage were found approximately 25 to approximately 200 kb apart in the genomic regions surveyed. We examined in detail a 501 kb region of chromosome I and found six sites, or tight clusters of sites, at which approximately 2%-11% of the DNA accumulated breaks in a rad50S mutant. In contrast to the discrete, widely spaced distribution of prominent break sites, recombination in this region was more uniformly distributed (0.7-1.6 cM/10 kb) whether the genetic interval tested contained no, one, or more such sites. We infer that although recombination depends upon DNA breakage, recombination often occurs remote from these sites (tens of kilobases away); we discuss mechanisms by which this may occur.
Molecular and Cellular Biology | 2005
Walter W. Steiner; Gerald R. Smith
ABSTRACT The M26 hot spot of meiotic recombination in Schizosaccharomyces pombe is the eukaryotic hot spot most thoroughly investigated at the nucleotide level. The minimum sequence required for M26 activity was previously determined to be 5′-ATGACGT-3′. Originally identified by a mutant allele, ade6-M26, the M26 heptamer sequence occurs in the wild-type S. pombe genome approximately 300 times, but it has been unclear whether any of these are active hot spots. Recently, we showed that the M26 heptamer forms part of a larger consensus sequence, which is significantly more active than the heptamer alone. We used this expanded sequence as a guide to identify a smaller number of sites most likely to be active hot spots. Ten of the 15 sites tested showed meiotic DNA breaks, a hallmark of recombination hot spots, within 1 kb of the M26 sequence. Among those 10 sites, one occurred within a gene, cds1+, and hot spot activity of this site was confirmed genetically. These results are, to our knowledge, the first demonstration in any organism of a simple, defined nucleotide sequence accurately predicting the locations of natural meiotic recombination hot spots. M26 may be the first example among a diverse group of simple sequences that determine the distribution, and hence predictability, of meiotic recombination hot spots in eukaryotic genomes.
Genetics | 2009
Walter W. Steiner; Estelle M. Steiner; Angela R. Girvin; Lauren E. Plewik
In many organisms, including yeasts and humans, meiotic recombination is initiated preferentially at a limited number of sites in the genome referred to as recombination hotspots. Predicting precisely the location of most hotspots has remained elusive. In this study, we tested the hypothesis that hotspots can result from multiple different sequence motifs. We devised a method to rapidly screen many short random oligonucleotide sequences for hotspot activity in the fission yeast Schizosaccharomyces pombe and produced a library of ∼500 unique 15- and 30-bp sequences containing hotspots. The frequency of hotspots found suggests that there may be a relatively large number of different sequence motifs that produce hotspots. Within our sequence library, we found many shorter 6- to 10-bp motifs that occurred multiple times, many of which produced hotspots when reconstructed in vivo. On the basis of sequence similarity, we were able to group those hotspots into five different sequence families. At least one of the novel hotspots we found appears to be a target for a transcription factor, as it requires that factor for its hotspot activity. We propose that many hotspots in S. pombe, and perhaps other organisms, result from simple sequence motifs, some of which are identified here.
Genetics | 2011
Walter W. Steiner; Peter A. Davidow; Andrew T. M. Bagshaw
In many organisms, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. In the fission yeast Schizosaccharomyces pombe, simple sequence motifs determine the location of at least some, and possibly most or all, hotspots. Recently, we showed that a large number of different sequences can create hotspots. Among those sequences we identified some recurring motifs that fell into at least five distinct families, including the well-characterized CRE family of hotspots. Here we report the essential sequence for activity of two of the novel hotspots, the oligo-C and CCAAT hotspots, and identify associated trans-acting factors required for hotspot activity. The oligo-C hotspot requires a unique 8-bp sequence, CCCCGCAC, though hotspot activity is also significantly affected by adjacent nucleotides. The CCAAT hotspot requires a more complex and degenerate sequence, including the originally identified seven nucleotide CCAATCA sequence at its core. We identified transcription factors, the CCAAT-binding factor (CBF) and Rst2, which are required specifically for activity of the CCAAT hotspots and oligo-C hotspots, respectively. Each of these factors binds to its respective motifs in vitro. However, unlike CRE, the sequence required for hotspot activity is larger than the sequence required for binding, suggesting the involvement of additional factors.
Genetics | 2005
Joseph A. Farah; Gareth A. Cromie; Luther Davis; Walter W. Steiner; Gerald R. Smith
Spo11 or a homologous protein appears to be essential for meiotic DNA double-strand break (DSB) formation and recombination in all organisms tested. We report here the first example of an alternative, mutationally activated pathway for meiotic recombination in the absence of Rec12, the Spo11 homolog of Schizosaccharomyces pombe. Rad2, a FEN-1 flap endonuclease homolog, is involved in processing Okazaki fragments. In its absence, meiotic recombination and proper segregation of chromosomes were restored in rec12Δ mutants to nearly wild-type levels. Although readily detectable in wild-type strains, meiosis-specific DSBs were undetectable in recombination-proficient rad2Δ rec12Δ strains. On the basis of the biochemical properties of Rad2, we propose that meiotic recombination by this alternative (Rec*) pathway can be initiated by non-DSB lesions, such as nicks and gaps, which accumulate during premeiotic DNA replication in the absence of Okazaki fragment processing. We compare the Rec* pathway to alternative pathways of homologous recombination in other organisms.
Bioorganic & Medicinal Chemistry Letters | 2009
Michelle L. Ingalsbe; Jeffrey D. St. Denis; Megan E. McGahan; Walter W. Steiner; Ronny Priefer
Due to the increasing number of strains of drug-resistant bacteria, the development of new antibiotics has become increasingly important. The antibacterial properties of quaternary amines and their derivatives on both Gram-positive and Gram-negative bacteria are well known. However, an encompassing study with specific emphasis on the role of the counter-anion has not been reported in the literature. By monitoring the Zone of Inhibition of various concentrations of tetrabutylammonium (TBA) salts, we observed that the counter anion plays a significant role in activity. We developed a novel method of reporting activity using zone of inhibition tests (ZI(MAX)/K(ZI)) and found it to be strongly correlated with the minimum inhibitory concentration (MIC).
PLOS ONE | 2012
Walter W. Steiner; Estelle M. Steiner
In most organisms, including humans, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. There has been substantial progress recently in elucidating the factors determining the location of meiotic recombination hotspots, and it is becoming clear that simple sequence motifs play a significant role. In S. pombe, there are at least five unique sequence motifs that have been shown to produce hotspots of recombination, and it is likely that there are more. In S. cerevisiae, simple sequence motifs have also been shown to produce hotspots or show significant correlations with hotspots. Some of the hotspot motifs in both yeasts are known or suspected to bind transcription factors (TFs), which are required for the activity of those hotspots. Here we show that four of the five hotspot motifs identified in S. pombe also create hotspots in the distantly related budding yeast S. cerevisiae. For one of these hotspots, M26 (also called CRE), we identify TFs, Cst6 and Sko1, that activate and inhibit the hotspot, respectively. In addition, two of the hotspot motifs show significant correlations with naturally occurring hotspots. The conservation of these hotspots between the distantly related fission and budding yeasts suggests that these sequence motifs, and others yet to be discovered, may function widely as hotspots in many diverse organisms.
Gene | 2016
Walter W. Steiner; Chelsea L. Recor; Bethany M. Zakrzewski
The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles.
Journal of Molecular Biology | 1997
Diane M Tasset; Mark F. Kubik; Walter W. Steiner