Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter Wouters is active.

Publication


Featured researches published by Walter Wouters.


The Journal of Steroid Biochemistry and Molecular Biology | 1996

P450-dependent enzymes as targets for prostate cancer therapy

R. De Coster; Walter Wouters; J. Bruynseels

Metastatic prostate adenocarcinoma is a leading cause of cancer-related deaths among men. First line treatment is primarily aimed at blocking the synthesis and action of androgens. As primary endocrine treatment, androgen deprivation is usually achieved by orchidectomy or LHRH analogues, frequently combined with androgen receptor antagonists in order to block the residual adrenal androgens. However, nearly all the patients will eventually relapse. Available or potential second line therapies include, among others, alternative endocrine manipulations and chemotherapy. Cytochrome P450-dependent enzymes are involved in the synthesis and/or degradation of many endogenous compounds, such as steroids and retinoic acid. Some of these enzymes represent suitable targets for the treatment of prostate cancer. In first line therapy, inhibitors of the P450-dependent 17,20-lyase may achieve a maximal androgen ablation with a single drug treatment. Ketoconazole at high dose blocks both testicular and adrenal androgen biosynthesis but its side-effects, mainly gastric discomfort, limit its widespread use. A series of newly synthesized, more selective, steroidal 17,20-lyase inhibitors related to 17-(3-pyridyl)androsta-5,16-dien-3beta-ol, may open new perspectives in this field. In prostate cancer patients who relapse after surgical or medical castration, therapies aiming at suppressing the remaining adrenal androgen biosynthesis (ketoconazole) or producing a medical adrenalectomy (aminoglutethimide+hydrocortisone) have been used, but are becoming obsolete with the generalization of maximal androgen blockade in first line treatment. The role of inhibition of aromatase in prostate cancer therapy, which was postulated for aminoglutethimide, could not be confirmed by the use of more selective aromatase inhibitors, such as formestane. An alternative approach is represented by liarozole fumarate (LIA), a compound that blocks the P450-dependent catabolism of retinoic acid (RA). In vitro, it enhances the antiproliferative and differentiation effects of RA in cell lines that express RA metabolism, such as F9 teratocarcinoma and MCF-7 breast carcinoma cells. In vivo, monotherapy with LIA increases RA plasma levels and, to a greater extent, endogenous tissue RA levels leading to retinoid-mimetic effects. In the rat Dunning prostate cancer models, it inhibits the growth of androgen-independent as well as androgen-dependent carcinomas relapsing after castration. Concurrently, changes in the pattern of cytokeratins characteristic of increased differentiation were observed. Early clinical trials show that LIA, in second or third line therapy in metastatic prostate cancer, induces PSA responses in about 30% of unselected patients. In some patients regression of soft tissue metastasis ha been observed. In a subgroup of patients, an important relief of metastatic bone pain was also noted.


The Journal of Steroid Biochemistry and Molecular Biology | 1990

New non-steroidal aromatase inhibitors: Focus on R76713

R. De Coster; Walter Wouters; Charlie Bowden; H. Vanden Bossche; J. Bruynseels; R.W. Tuman; R. Van Ginckel; Eric Snoeck; A. Van Peer; Paul A. J. Janssen

R76713 is a novel triazole derivative which selectively blocks the cytochrome P450-dependent aromatase. In human placental microsomes, in FSH-stimulated rat and human granulosa cells and in human adipose stromal cells, 50% inhibition of estradiol biosynthesis was obtained at drug concentrations of 2-10 nM. In PMSG-injected female rats, R76713 lowered plasma estradiol levels by 50 and 90% 2 h after single oral doses of 0.005 and 0.05 mg/kg respectively. After 1 mg/kg, estradiol levels were suppressed by 90% for 16 h. In male cynomolgus monkeys, R76713 dose-dependently (0.03-10 micrograms/kg) inhibited peripheral aromatization with an ED50 of 0.13 microgram/kg without altering metabolic clearance rates and conversion ratios. In vitro R76713 had no effect on other P450-dependent steroidogenic enzymes up to 1000 nM at least. In rats, LHRH-, ACTH- and sodium-deprived diet stimulated plasma testosterone, corticosterone and aldosterone levels were not modified 2 h after single oral administrations of R76713 (up to 20 mg/kg). Furthermore, R76713 did not show any in vitro or in vivo estrogenic or antiestrogenic property. R76713 also induced regression of DMBA-induced mammary tumors after daily oral administration of 1 mg/kg b.i.d. In male volunteers (n = 4), a single oral dose of 5 and 10 mg lowered median plasma estradiol levels from 70 pM to the detection limit of the assay (40 pM) 4, 8 and 24 h after intake whereas no changes were detected after placebo administration. In premenopausal women (n = 15), receiving a single oral dose of 20 mg, median plasma estradiol levels decreased from 389 pM (before) to 168, 133 and 147 pM, 4, 8 and 24 h after intake whereas they remained above 420 pM after placebo (n = 7).


The Journal of Steroid Biochemistry and Molecular Biology | 1992

Experimental studies with liarozole (R 75,251): an antitumoral agent which inhibits retinoic acid breakdown.

R. De Coster; Walter Wouters; R. Van Ginckel; David William End; M. Krekels; M.-C. Coene; Charlie Bowden

Liarozole reduced tumor growth in the androgen-dependent Dunning-G and the androgen-independent Dunning MatLu rat prostate carcinoma models as well as in patients with metastatic prostate cancer who had relapsed after orchiectomy. In vitro, liarozole did not have cytostatic properties, as measured by cell proliferation in breast MCF-7 and prostate DU145 and LNCaP carcinoma cell lines. It did not alter the metabolism of labeled testosterone i.e. the 5 alpha-reductase in cultured rat prostatic cells. In mouse F9 teratocarcinoma cells liarozole did not show any retinoid-like properties but enhanced the plasminogen activator production induced by retinoic acid. Furthermore, liarozole and retinoic acid similarly reduced the growth of the androgen-dependent Dunning-G tumor in nude mice and inhibited tumor promotion elicited by phorbol ester in mouse skin. These data have raised the hypothesis that the antitumoral properties of liarozole may be related to inhibition of retinoic acid degradation, catalyzed by a P-450-dependent enzyme that is blocked by the drug.


Breast Cancer Research and Treatment | 1994

Vorozole, a specific non-steroidal aromatase inhibitor

Walter Wouters; Eric Snoeck; Roland De Coster

SummaryVorozole, the (+)-(S)-isomer of a new triazole compound, is a potent and selective aromatase inhibitor.In vitro, the compound is over a thousandfold more active than aminoglutethimide.In vivo, the compound very potently inhibits ovarian, peripheral, and tumoral aromatase. Vorozole shows anin vitro selectivity margin of 10,000-fold for aromatase inhibition as compared to inhibition of other P450- and non-P450-dependent reactions. This selectivity was confirmed in the ratin vivo. Vorozole, like ovariectomy, almost completely reduces tumor growth in the DMBA-induced mammary carcinoma model in the rat.In postmenopausal women, vorozole very potently inhibits peripheral conversion of androstenedione to estrone. After chronic administration, plasma estradiol levels are reduced while the levels of adrenal gluco- and mineralo-corticoids remain unchanged. Vorozole has excellent oral bioavailability and exerts linear, dose-proportional pharmacokinetics.


British Journal of Cancer | 1998

All-trans-retinoic acid metabolites significantly inhibit the proliferation of MCF-7 human breast cancer cells in vitro.

J Van heusden; Walter Wouters; Fcs Ramaekers; Mdwg Krekels; L. Dillen; Marcel Borgers; Gerda Smets

All-trans-retinoic acid (ATRA) is well known to inhibit the proliferation of human breast cancer cells. Much less is known about the antiproliferative activity of the naturally occurring metabolites and isomers of ATRA. In the present study, we investigated the antiproliferative activity of ATRA, its physiological catabolites 4-oxo-ATRA and 5,6-epoxy-ATRA and isomers 9-cis-RA and 13-cis-RA in MCF-7 human breast cancer cells by bromodeoxyuridine incorporation. MCF-7 cells were grown in steroid- and retinoid-free medium supplemented with growth factors. Under these culture conditions, ATRA and its naturally occurring catabolites and isomers showed significant antiproliferative activity in MCF-7 cells in a concentration-dependent manner (10[-11] M to 10[-6] M). The antiproliferative activity of ATRA catabolites and isomers was equal to that of the parent compound ATRA at concentrations of 10(-8) M and 10(-7) M. Only at 10(-6) M were the catabolites and the stereoisomer 13-cis-RA less potent. The stereoisomer 9-cis-RA was as potent as ATRA at all concentrations tested (10[-11] M to 10[-6] M). In addition, we show that the catabolites and isomers were formed from ATRA to only a limited extent. Together, our findings suggest that in spite of their high antiproliferative activity the catabolites and isomers of ATRA cannot be responsible for the observed growth inhibition induced by ATRA.


Journal of Steroid Biochemistry | 1989

Aromatase inhibition by R 76713: Experimental and clinical pharmacology☆

Walter Wouters; R. De Coster; R.W. Tuman; Charlie Bowden; J. Bruynseets; H. Vanderpas; P. Van Rooy; Willem K. Amery; Paul A. J. Janssen

R 76713 is a new non-steroidal compound which inhibits aromatase in vitro and in vivo with a potency of at least 1000-fold that of aminoglutethimide. In male cynomolgus monkeys peripheral conversion of labeled androstenedione to estrone is decreased by 85%, 4-5 h after a single intravenous dose of 0.003 mg/kg of R 76713, without altering steroid metabolic clearance rates. In rats fed a sodium-depleted diet for 3 weeks, plasma levels of aldosterone and plasma renin activity remain unchanged 2 h after a single oral dose of up to 20 mg/kg of R 76713. This confirms previous data on the selectivity of R 76713 for aromatase inhibition as compared to inhibition of other enzymes involved in steroid biosynthesis. In male volunteers, a single oral dose of 5 or 10 mg of R 76713 lowers median plasma estradiol levels from 70 pM to the detection limit of the assay (30 pM) 4 and 8 h after intake, whereas no important changes are detected after placebo administration. In 15 premenopausal female volunteers receiving a single oral dose of 20 mg of R 76713, mean plasma estradiol levels decrease from 415 pM (before) to 179, 149 and 185 pM respectively 4, 8 and 24 h after intake whereas they remain above 380 pM after placebo (n = 7).


The Journal of Steroid Biochemistry and Molecular Biology | 1990

Comparative effects of the aromatase inhibitor R76713 and of its enantiomers R83839 and R83842 on steroid biosynthesis in vitro and in vivo.

Walter Wouters; Roland De Coster; Jacky Van Dun; M. Krekels; Ann Dillen; Alfons Herman Marg Raeymaekers; Eddy Jean Edgard Freyne; Jozef Van Gelder; Gerard Charles Sanz; Marc Gaston Venet; Marcel Janssen

R76713 (6-[(4-chlorophenyl)(1H-1,2,4-triazol-1-yl)methyl]-1-methyl-1H- benzotriazole) is a selective, non-steroidal aromatase inhibitor containing an asymmetric carbon atom. In this paper, we compare the effects of R76713 (racemate) with its enantiomers R83839 (the levo-isomer) and R83842 (the dextro-isomer) on steroid biosynthesis in rat cells in vitro and in the rat in vivo. In rat granulosa cells, aromatase activity was inhibited by 50% at concentrations of 0.93 nM of R76713, 240 nM of R83839 and 0.44 nM of R83842, revealing a 545-fold difference in activity between both enantiomers. Up to 1 microM, none of the compounds had any effect on steroid production in primary cultures of rat testicular cells. Above this concentration all three compounds showed a similar slight inhibition of androgen synthesis with a concomitant increase in the precursor progestins, indicative for some effect on the 17-hydroxylase/17,20-lyase enzyme. In rat adrenal cells none of the compounds showed any effect on corticosterone synthesis. At concentrations above 1 microM there was an increase in the levels of 11-deoxycorticosterone pointing towards an inhibition of the 11-hydroxylase enzyme. This increase was more pronounced for R83839 than for R76713 and R83842. In vivo, in PMSG-primed rats, R83842 reduced plasma estradiol by 50%. 2 h after oral administration of 0.0034 mg/kg, whereas 0.011 mg/kg of R76713 and 0.25 mg/kg of R83839 were needed to obtain the same result. Oral administration of up to 20 mg/kg of the compounds did not significantly affect plasma levels of adrenal steroids in LHRH/ACTH-injected rats. Plasma testosterone was lowered at 10 and 20 mg/kg of R83842 and at the highest dose (20 mg/kg) of R76713 and R83839. In conclusion, the present study shows that the aromatase inhibitory activity of R76713 resides almost exclusively in its dextro-isomer R83842. R83842 exhibits a specificity for aromatase as compared to other enzymes involved in steroid biosynthesis of at least a 1000-fold in vitro as well as in vivo. This confirms the extreme selectivity previously found for the racemate.


The Journal of Steroid Biochemistry and Molecular Biology | 1991

Aromatase in the human choriocarcinoma JEG-3: Inhibition by R 76 713 in cultured cells and in tumors grown in nude mice

M. Krekels; Walter Wouters; R. De Coster; R. Van Ginckel; A. Leonaers; Paul A. J. Janssen

The aromatase enzyme and its inhibition by R 76 713 were characterized in the JEG-3 choriocarcinoma cell line in culture and in JEG-3 tumors grown in nude mice. Optimal cell culture parameters and enzyme reaction conditions for the determination of aromatase activity were established. Under these conditions, in vitro JEG-3 aromatase was inhibited by R 76 713 with IC50-values of 7.6 +/- 0.5 nM and 2.7 +/- 1.1 nM using 500 nM of androstenedione and testosterone as substrate respectively. The Km-value of the aromatase enzyme with androstenedione as substrate was 62 +/- 19 nM; with testosterone as substrate, a value of 166 +/- 27 nM was found. In the presence of increasing concentrations of R 76 713, the Km-values increased while the Vmax remained unchanged. Using androstenedione and testosterone as substrate Lineweaver-Burk analysis of the data showed Ki-values for R 76 713 of 0.43 +/- 0.06 nM and 0.47 +/- 0.39 nM respectively. R 76 713 appeared to competitively inhibit the JEG-3 aromatase. Aromatase could easily be measured in homogenates of JEG-3 tumors grown in nude mice and showed Km-values similar to those found for JEG-3 cells in vitro. IC50-values for inhibition of tumor aromatase by R 76 713 were also similar to those found in cultured cells. Tumor aromatase measured ex vivo, 2 h after a single oral administration of R 76 713 was dose-dependently inhibited. An ED50-value of 0.05 mg/kg was calculated. The JEG-3 choriocarcinoma proved to be a useful aromatase model enabling the comparative study of aromatase inhibition in vitro and in vivo.


Steroids | 1990

Aromatase inhibition by R 76 713: a kinetic analysis in rat ovarian homogenates

M. Krekels; Walter Wouters; Roland De Coster

Reaction kinetics of the aromatase enzyme and of a new nonsteroidal aromatase inhibitor, R 76 713 (6-[(4-chlorophenyl)(1H-1,2,4-triazol-1-yl)-methyl]-1-methyl-1H- benzotriazole), were studied in ovarian homogenates obtained from pregnant mares serum gonadotropin (PMSG)-injected female Wistar rats. The Km (Michaelis constant) of the aromatase enzyme with androstenedione as the substrate was 47 +/- 13 nM; for testosterone as the substrate, a value of 159 +/- 10 nM was found. In the presence of increasing concentrations of R 76 713, the Km increased while the Vmax (maximal velocity of enzyme-catalyzed reaction) remained unchanged. Using androstenedione and testosterone as the substrate, Lineweaver-Burk analysis of the data showed a Ki (dissociation constant of the enzyme-inhibitor complex) for R 76 713 of 0.7 +/- 0.3 nM and 1.6 +/- 0.4 nM, respectively. R 76 713 appeared to competitively inhibit the rat ovarian aromatase.


British Journal of Cancer | 1998

The antiproliferative activity of all-trans-retinoic acid catabolites and isomers is differentially modulated by liarozole-fumarate in MCF-7 human breast cancer cells

J Van heusden; Walter Wouters; Fcs Ramaekers; M. D. W. G. Krekels; L. Dillen; Marcel Borgers; Gerda Smets

The clinical use of all-trans-retinoic acid (ATRA) in the treatment of cancer is significantly hampered by the prompt emergence of resistance, believed to be caused by increased ATRA catabolism. Inhibitors of ATRA catabolism may therefore prove valuable for cancer therapy. Liarozole-fumarate is an anti-tumour drug that inhibits the cytochrome P450-dependent catabolism of ATRA. ATRA, but also its naturally occurring catabolites, 4-oxo-ATRA and 5,6-epoxy-ATRA, as well as its stereoisomers, 9-cis-RA and 13-cis-RA, show significant antiproliferative activity in MCF-7 human breast cancer cells. To further elucidate its mechanism of action, we investigated whether liarozole-fumarate was able to enhance the antiproliferative activity of ATRA catabolites and isomers. Liarozole-fumarate alone up to a concentration of 10(-6) M had no effect on MCF-7 cell proliferation. However, in combination with ATRA or the ATRA catabolites, liarozole-fumarate (10(-6) M) significantly enhanced their antiproliferative activity. On the contrary, liarozole-fumarate (10(-6) M) was not able to potentiate the antiproliferative activity of the ATRA stereoisomers, most probably because of the absence of cytochrome P450-dependent catabolism. Together, these findings show that liarozole-fumarate acts as a versatile inhibitor of retinoid catabolism in that it not only blocks the breakdown of ATRA, but also inhibits the catabolic pathway of 4-oxo-ATRA and 5,6-epoxy-ATRA, thereby enhancing their antiproliferative activity.

Collaboration


Dive into the Walter Wouters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge