Wan Azelee Wan Abu Bakar
Universiti Teknologi Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wan Azelee Wan Abu Bakar.
Journal of Natural Gas Chemistry | 2011
Wan Azelee Wan Abu Bakar; Rusmidah Ali; Susilawati Toemen
The presence of carbon dioxide and water molecules as impurities in crude natural gas decreases the quality of natural gas. Recently, the catalytic treatment of this toxic and acidic gas has become a promising technique by converting CO2 to methane gas in the presence of H2S gas; thus, enhancing methane production and creating an environmentally friendly approach to the purification of natural gas. A series of catalysts based on nickel oxide were prepared using the wetness impregnation technique and aging, followed by calcination at 400 °C. Pd/Ru/Ni(2:8:90)/ Al2O3 catalyst was revealed as the most potential catalyst, and achieved 43.60% of CO2 conversion, with 6.82% of methane formation at 200 °C. This catalyst had the highest percentage of 52.95% CO2 conversion and yielded 39.73% methane at a maximum temperature of 400 °C. In the presence of H2S in the gas stream, the conversion dropped to 35.03%, with 3.64% yield of methane at a reaction temperature of 400 °C. However, this catalyst achieved 100% H2S desulfurization at 140 °C and remained constant until the reaction temperature of 300 °C. Moreover, the XRD diffractogram showed that the catalyst is highly amorphous in structure, with a BET surface area in the range of 220–270 m2 g- 1. FESEM analysis indicated a rough surface morphology and non-homogeneous spherical shape, with the smallest particles size in the range 40–115 nm.
Journal of Fuel Chemistry and Technology | 2012
Wan Azelee Wan Abu Bakar; Rusmidah Ali; Abdul Aziz Abdul Kadir; Salmiah Jamal Mat Rosid; Nurul Shafeeqa Mohammad
A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method. The variables studied were difference ratio and calcination temperatures. Pt/Co(10:90)/Al2O3 catalyst calcined at 700°C was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400°C. X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase. According to the FESEM micrographs, both fresh and spent Pt/Co(10:90)/Al2O3 catalysts displayed small particle size with undefined shape. Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co(10:90)/Al2O3 catalyst. Meanwhile, Energy Dispersive X-ray analysis (EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co(10:90)/Al2O3 catalyst. Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co(10:90)/Al2O3 catalyst.
Korean Journal of Chemical Engineering | 2015
Wan Nazwanie Wan Abdullah; Wan Azelee Wan Abu Bakar; Rusmidah Ali
Abstractperformance of oxidative desulfurization (ODS) of commercial diesel by alumina supported polymolybdate based catalyst system was studied using tert-butyl hydroperoxide (TBHP) as an oxidizing agent. From catalytic testing, MoO3-Al2O3 calcined at 500 °C was the most potential catalyst which gave the highest sulfur removal under mild condition. The sulfur content in commercial diesel was successfully reduced from 440 ppmw to 105 ppmw followed by solvent extraction. Response surface methodology involving Box-Behnken was employed to evaluate and optimize MoO3/Al2O3 preparation parameters (calcination temperatures, molybdenum loading precursor and catalyst loading), and their optimum values were found to be 510 °C, 0.98 g and 11.18 g/L of calcination temperature, molybdenum loading precursor and catalyst loading, respectively. Based on results, the reaction mechanism for oxidation of sulfur compounds to the corresponding sulfones occur in the presence of MoO3/Al2O3 catalyst was proposed.
Modern Chemistry & Applications | 2015
Wan Azelee Wan Abu Bakar; Rusmidah Ali; Abdul Aziz Abdul Kadir; Wan Nur Aini Wan Mokhtar
The industrial technology, hydrodesulfurization (HDS) is incapable to meet ultra-low sulfur standard due to the limited treatment on organosulfur compound in diesel fuel. In this paper, catalytic oxidative desulfurization of thiophene, dibenzothiophene and 4,6-dimethyldibenzothiophene using molybdenum oxide based catalyst was investigated. A detailed parametric experimental study; number of coating, calcination temperature, addition of dopant was performed on sulfur removal. It was shown that 4.35% WO3/16.52% MoO3/γ-Al2O3 , calcined at 500°C was successfully removed 92.5% of thiophene, 100% of DBT and 100% of 4,6-DMDBT in model diesel at short reaction time and lower temperature.
Petroleum Science and Technology | 2014
Norshahidatul Akmar Mohd Shohaimi; Wan Azelee Wan Abu Bakar; Jafariah Jaafar
The presence of naphthenic acids in crude oils has caused a major corrosion problem to the production equipment, storage and transport facilities in the petroleum industry. To overcome this problem, catalytic neutralization method will be investigated on real petroleum crude oil sample with various parameters study such as the type of basic chemical used, dosing amount, type of catalyst, catalyst calcination temperature, and catalyst ratio of basic metal and dopant. Potential catalyst was characterized by XRD, NA, and TGA-DTA for its physical properties. Cu/Ca(10:90)/Al2O3 catalyst with calcination temperature of 1000°C was an effective catalyst for all three types of crude oil. In the presence of catalyst, all three types of crude oil samples showed enhancement in the removal of naphthenic acid.
Modern Chemistry & Applications | 2013
Norshahidatul Akmar Mohd Shohaimi; Wan Azelee Wan Abu Bakar; Jafariah Jaafar; Nurasmat Mohd Shukri
The presence of naphthenic acids in crude oils has caused a major corrosion problem to the production equipment, storage and transport facilities in the petroleum industry. The level of acidity of crude oil was determined by the value of Total Acid Number (TAN) in the oil samples. Two types of crude: Petronas Penapisan Melaka Heavy Crude and Petronas Penapisan Melaka Light Crude were studied. Various parameters studied were the amount of chemical dosing, type of catalyst, different catalyst calcination temperatures, and catalyst ratio of basic metal and dopant. The basic chemical used was ammonia solution in ethylene glycol (NH3-EG) with a concentration range of 100-1000 mg/L. The best experimental condition for the possible TAN for the two samples is 1000 mg/L of NH3-EG, and the catalyst reaction must be in the range of 35-40°C. Cu/Mg (10:90)/Al2O3 catalyst successfully reduced TAN in Heavy Crude for about 84.8% while for Light Crude, TAN was reduced 66.7% with the aids of Ni/Mg (10:90)/Al2O3 catalyst. Increase concentration of basic chemical, reduced the total acid number value of both crude oil.
RSC Advances | 2016
Naimat Abimbola Eleburuike; Wan Azelee Wan Abu Bakar; Rusmidah Ali; Muhammad Firdaus Omar
Decontamination of water sources by one-dimensional (1D) nanostructured TiO2 holds great potential due to their unique electronic and textural properties. In this study, CeO2-modified TiO2 nanotubes (Ce–TNTs) have been prepared by impregnation of CeO2 on hydrothermally synthesized TiO2 nanotubes (TNTs). The catalysts were characterized by XRD, HRTEM, EDX, STEM, EELS, DR-UV/VIS spectroscopy and nitrogen adsorption (NA) analyses. The photocatalytic activities of the synthesized Ce–TNTs were examined on the degradation of paraquat dichloride (PQ) under UV light. The modification of TNTs with CeO2 led to an enhancement of the photocatalytic activity. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to optimize three experimental parameters namely; CeO2 ratio, calcination temperature and catalyst loading. ANOVA of the generated quadratic model yielded a coefficient of determination, R2 of 0.9926 and probability, P < 0.0001, which confirms that the model is suitable for predicting the optimum degradation efficiency of PQ. Based on this model, the calcination temperature and CeO2 ratio were the most significant parameters and the interactions between these parameters and the catalyst loading were also significant. The predicted optimum conditions that would give a maximum of 80.798% degradation of PQ in 4 h were 9.01% CeO2 ratio, 760.49 °C calcination temperature and 0.38 g catalyst loading. Validation experiments were conducted in triplicate and an average of 80.27% degradation of PQ was achieved which is in agreement with 80.798% predicted. Under these optimum conditions, TOC analysis showed that 51.10% mineralization of PQ was achieved within 4 h. Therefore, this work further confirms that the photocatalytic treatment of organics-contaminated water can be designed and optimized by RSM.
Petroleum Science and Technology | 2018
Wan Nur Aini Wan Mokhtar; Wan Azelee Wan Abu Bakar; Wan Nazwanie Wan Abdullah; Susilawati Toeman; Salmiah Jamal Mat Rosid
Abstract In this work, a series of supported manganese catalyst has been synthesized and utilized in oxidative desulfurization to remove 4,6-dimethyldibenzothiophene (4,6-DMDBT), dibenzothiophene (DBT) and thiophene. The influences of catalyst parameters were investigated including manganese precursors, manganese loading and calcination temperature in details. The synthesized catalyst was characterized by scanning electron microscopy (SEM), N2 adsorption/desorption and X-ray diffraction (XRD) techniques. 90.2% of 4,6-DMDBT, 98.5% of DBT and 95.5% of thiophene conversion were achieved under mild operational conditions using 3Mn(NO3)2/Al2O3 at 500 °C calcination temperature. A slight decrease in desulfurization activity was observed after Mn/Al2O3 catalyst being used in five cycles ODS.
The Malaysian Journal of Analytical Sciences | 2017
Nurasmat Mohd Shukri; Jafariah Jaafar; Wan Azelee Wan Abu Bakar; Zaiton Abdul Majid
The presence of naphthenic acid (NA) in petroleum crude oil may cause serious corrosion problem for refinery processing equipment. In this work, an alternative method to remove NA is investigated based on the catalytic deacidification reaction to achieve the target of lowering the total acid number (TAN) as required by PETRONAS to be less than 1. Ammoniated polyethylene glycol (NH3-PEG) was formulated as a deacidifying agent with various concentrations ranging from 100 – 1000 mg/L for crude oil. Cerium oxide based catalyst supported on alumina was synthesized via wet impregnation method and characterized using X-ray diffraction spectroscopy (XRD), Brunauer–Emmett–Teller (BET) and thermogravimetry analysisdifferential thermal analysis (TGA-DTA). Parameters such as amount of basic chemical dosing, type of metal oxides, catalyst calcination temperature and reusability of catalyst on the removal of NA was studied. The results showed the TAN value for crude oil was reduced by 70.6% to a TAN of 0.74 mg KOH/g by using 1000 mg/L of NH3-PEG dosing aids by Ce/Al2O3 catalyst calcined at 1000 C.
The Malaysian Journal of Analytical Sciences | 2017
Salmiah Jamal Mat Rosid; Wan Azelee Wan Abu Bakar; Rusmidah Ali
Lanthanum oxide based catalyst was revealed as one of potential catalyst to convert carbon dioxide to wealth product methane in simulated natural gas. To produce higher conversion of carbon dioxide, the Response Surface Methodology utilizing Box-Behnken design (BBD) was used to optimize the lanthanum oxide based catalysts by three critical parameters which were calcination temperature, based ratio and catalyst dosage. The maximum CO2 conversion was achieved at 1000oC calcination temperature using 7 g of catalyst for 60% based loading. The optimization result from BBD is in good agreement with experimental data. The optimize parameters gave 99% of CO2 conversion determined using Fourier Transformation Infrared (FTIR) and yielded about 50% of CH4 at reaction temperature of 400 °C. X-ray Diffraction (XRD) analysis showed an amorphous structure with RuO2 as active species and Field Emission Scanning Electron Microscope (FESEM) illustrated the catalyst surface was covered with small and dispersed particles with undefined shape. EDX analysis revealed that when the calcination temperature was increased, the mass ratio of Ru increased.