Wan Hee Kim
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wan Hee Kim.
Journal of Veterinary Science | 2009
Hak-Hyun Ryu; Ji-Hey Lim; Ye-Eun Byeon; Jeong-Ran Park; Min-Soo Seo; Youngwon Lee; Wan Hee Kim; Kyung-Sun Kang; Oh-Kyeong Kweon
In this study, we evaluated if the implantation of allogenic adipose-derived stem cells (ASCs) improved neurological function in a canine spinal cord injury model. Eleven adult dogs were assigned to three groups according to treatment after spinal cord injury by epidural balloon compression: C group (no ASCs treatment as control), V group (vehicle treatment with PBS), and ASC group (ASCs treatment). ASCs or vehicle were injected directly into the injured site 1 week after spinal cord injury. Pelvic limb function after transplantation was evaluated by Olby score. Magnetic resonance imaging, somatosensory evoked potential (SEP), histopathologic and immunohistichemical examinations were also performed. Olby scores in the ASC group increased from 2 weeks after transplantation and were significantly higher than C and V groups until 8 weeks (p < 0.05). However, there were no significant differences between the C and V groups. Nerve conduction velocity based on SEP was significantly improved in the ASC group compared to C and V groups (p < 0.05). Positive areas for Luxol fast blue staining were located at the injured site in the ASC group. Also, GFAP, Tuj-1 and NF160 were observed immunohistochemically in cells derived from implanted ASCs. These results suggested that improvement in neurological function by the transplantation of ASCs in dogs with spinal cord injury may be partially due to the neural differentiation of implanted stem cells.
Journal of Veterinary Science | 2007
Ji Hey Lim; Ye Eun Byeon; Hak Hyun Ryu; Yun Hyeok Jeong; Young Won Lee; Wan Hee Kim; Kyung Sun Kang; Oh Kyeong Kweon
This study was to determine the effects of allogenic umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) and recombinant methionyl human granulocyte colony-stimulating factor (rmhGCSF) on a canine spinal cord injury model after balloon compression at the first lumbar vertebra. Twenty-five adult mongrel dogs were assigned to five groups according to treatment after a spinal cord injury: no treatment (CN); saline treatment (CP); rmhGCSF treatment (G); UCB-MSCs treatment (UCB-MSC); co-treatment (UCBG). The UCB-MSCs isolated from cord blood of canine fetuses were prepared as 106 cells/150 µl saline. The UCB-MSCs were directly injected into the injured site of the spinal cord and rmhGCSF was administered subcutaneously 1 week after the induction of spinal cord injury. The Olby score, magnetic resonance imaging, somatosensory evoked potentials and histopathological examinations were used to evaluate the functional recovery after transplantation. The Olby scores of all groups were zero at the 0-week evaluation. At 2 week after the transplantation, the Olby scores in the groups with the UCB-MSC and UCBG were significantly higher than in the CN and CP groups. However, there were no significant differences between the UCB-MSC and UCBG groups, and between the CN and CP groups. These comparisons remained stable at 4 and 8 week after transplantation. There was significant improvement in the nerve conduction velocity based on the somatosensory evoked potentials. In addition, a distinct structural consistency of the nerve cell bodies was noted in the lesion of the spinal cord of the UCB-MSC and UCBG groups. These results suggest that transplantation of the UCB-MSCs resulted in recovery of nerve function in dogs with a spinal cord injury and may be considered as a therapeutic modality for spinal cord injury.
Journal of Veterinary Science | 2012
Byung Jae Kang; Hak Hyun Ryu; Sung Su Park; Yoshihisa Koyama; Masanori Kikuchi; Heung-Myong Woo; Wan Hee Kim; Oh Kyeong Kweon
Alternative sources of mesenchymal stem cells (MSCs) for replacing bone marrow (BM) have been extensively investigated in the field of bone tissue engineering. The purpose of this study was to compare the osteogenic potential of canine MSCs derived from adipose tissue (AT), BM, umbilical cord blood (UCB), and Whartons jelly (WJ) using in vitro culture techniques and in vivo orthotopic implantation assays. After canine MSCs were isolated from various tissues, the proliferation and osteogenic potential along with vascular endothelial growth factor (VEGF) production were measured and compared in vitro. For the in vivo assay, MSCs derived from each type of tissue were mixed with β-tricalcium phosphate and implanted into segmental bone defects in dogs. Among the different types of MSCs, AT-MSCs had a higher proliferation potential and BM-MSCs produced the most VEGF. AT-MSCs and UCB-MSCs showed greater in vitro osteogenic potential compared to the other cells. Radiographic and histological analyses showed that all tested MSCs had similar osteogenic capacities, and the level of new bone formation was much higher with implants containing MSCs than cell-free implants. These results indicate that AT-MSCs, UCB-MSCs, and WJ-MSCs can potentially be used in place of BM-MSCs for clinical bone engineering procedures.
Biomaterials | 2003
Youn-Ki Jun; Wan Hee Kim; Oh-Kyeong Kweon; Seong-Hyeon Hong
Alumina reinforced calcium phosphate porous implants were manufactured to improve the mechanical strength while maintaining the bioactivity of calcium phosphate ceramics. The alumina porous bodies, which provided the mechanical strength, were fabricated by a polyurethane sponge method and multiple coating techniques resulted in the porous bodies with a 90-75% porosity and a compressive strength of up to approximately 6MPa. The coating of hydroxyapatite (HAp) or tricalcium phosphate (beta-TCP) was performed by dipping the alumina porous bodies into calcium phosphate ceramic slurries and sintering the specimens. The fairly strong bonding between the HAp or TCP coating layer and the alumina substrate was obtained by repeating the coating and sintering processes. The biochemical evaluations of the porous implants were conducted by in vitro and in vivo tests. For in vitro test, the implants were immersed in Ringers solution and the release of Ca and P ions were detected and compared with those of calcium phosphate powders. For in vivo test, the porous bodies were implanted into mixed breed dogs and bone mineral density measurements and histological studies were conducted. The alumina reinforced HAp porous implants had a higher strength than the HAp porous implants and exhibited a similar bioactivity and osteoconduction property to the HAp porous implants.
Journal of Veterinary Science | 2008
Byung-Jun Jang; Ye-Eun Byeon; Ji-Hey Lim; Hak-Hyun Ryu; Wan Hee Kim; Yoshihisa Koyama; Masanori Kikuchi; Kyung-Sun Kang; Oh Kyeong Kweon
This study was performed to evaluate the osteogenic effect of allogenic canine umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) mixed with beta-tricalcium phosphate (β-TCP) in orthotopic implantation. Seven hundred milligrams of β-TCP mixed with 1 × 106 UCB-MSCs diluted with 0.5 ml of saline (group CM) and mixed with the same volume of saline as control (group C) were implanted into a 1.5 cm diaphyseal defect and wrapped with PLGC membrane in the radius of Beagle dogs. Radiographs of the antebrachium were made after surgery. The implants were harvested 12 weeks after implantation and specimens were stained with H&E, toluidine blue and Villanueva-Goldner stains for histological examination and histomorphometric analysis of new bone formation. Additionally, UCB-MSCs were applied to a dog with non-union fracture. Radiographically, continuity between implant and host bone was evident at only one of six interfaces in group C by 12 weeks, but in three of six interfaces in group CM. Radiolucency was found only near the bone end in group C at 12 weeks after implantation, but in the entire graft in group CM. Histologically, bone formation was observed around β-TCP in longitudinal sections of implant in both groups. Histomorphometric analysis revealed significantly increased new bone formation in group CM at 12 weeks after implantation (p < 0.05). When applied to the non-union fracture, fracture healing was identified by 6 weeks after injection of UCB-MSCs. The present study indicates that a mixture of UCB-MSCs and β-TCP is a promising osteogenic material for repairing bone defects.
Journal of Dermatological Science | 2012
Hyoju Kim; Kyuseok Choi; Oh-Kyeong Kweon; Wan Hee Kim
BACKGROUND Adipose-derived mesenchymal stem cells (ASCs) are attractive cell source for skin tissue engineering. However, one obstacle to this approach is that the transplanted ASC population can decline rapidly in the recipient tissue. OBJECTIVE The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on transplanted canine ASCs in a skin wound animal model. METHODS LLLT, ASC transplantation (ASCs) and ASC transplantation with LLLT (ASCs+LLLT) were applied to the wound bed in athymic mice. Wound healing was assessed by gross evaluation and by hematoxylin and eosin staining. The survival, differentiation and secretion of vascular endothelial growth factor and basic fibroblast growth factor of the ASCs were evaluated by immunohistochemistry and Western blotting. RESULTS The ASCs and ASCs+LLLT groups stimulated wound closure and histological skin regeneration. The ASCs+LLLT group enhanced the wound healing, including neovascularization and regeneration of skin appendages, compared with the ASCs group. The ASCs contributed skin regeneration via differentiation and secretion of growth factors. In the ASCs+LLLT group, the survival of ASCs was increased by the decreased apoptosis of ASCs in the wound bed. The secretion of growth factors was stimulated in the ASCs+LLLT group compared with the ASCs group. CONCLUSION These data suggest that LLLT is an effective biostimulator of ASCs in wound healing that enhances the survival of ASCs and stimulates the secretion of growth factors in the wound bed.
Journal of Biomedical Materials Research Part B | 2013
Kyuseok Choi; Byung-Jae Kang; Hyoju Kim; Seungmin Lee; Sohee Bae; Oh-Kyeong Kweon; Wan Hee Kim
This study investigates the feasibility of using an adipose-derived mesenchymal stem cell (ASC)-seeded acellular dermal matrix (ADM) along with low-level laser therapy (LLLT) to repair bone defect in athymic nude mice. Critical-sized calvarial defects were treated either with ADM, ADM/LLLT, ADM/ASCs, or ADM/ASCs/LLLT. In micro-computed tomography scans, the ADM/ASCs and the ADM/ASCs/LLLT groups showed remarkable bone formation after 14 days. Additionally, bone regeneration in the ADM/ASCs/LLLT group was obvious at 28 days, but in the ADM/ASCs group at 56 days. Bone mineral density and bone tissue volume in the ADM/ASCs/LLLT group significantly increased after 7 days, but in the ADM/ASCs group after 14 days. Histological analysis revealed that the defects were repaired in the ADM/ASCs and the ADM/ASCs/LLLT group, while the defects in the ADM and the ADM/LLLT groups exhibited few bone islands at 28 and 56 days. The successful seeding of ASCs onto ADM was confirmed, and LLLT enhanced the proliferation and the survival of ASCs at 14 days. Our results indicate that ASC-seeded grafts promote bone regeneration, and the application of LLLT on ASC-seeded ADM results in rapid bone formation. The implantation of an ASC-seeded ADM combined with LLLT may be used effectively for bone regeneration.
Cytotherapy | 2010
Ye-Eun Byeon; Hak-Hyun Ryu; Sung Su Park; Yoshihisa Koyama; Masanori Kikuchi; Wan Hee Kim; Kyung-Sun Kang; Oh-Kyeong Kweon
BACKGROUND AIMS The aim of this study was to evaluate the paracrine effects of canine umbilical cord blood (cUCB) mesenchymal stromal cells (MSC) mixed with beta-tricalcium phosphate (beta-TCP) on bone regeneration in ectopic implantation. METHODS beta-TCP mixed with cUCB MSC (UCB-MSC group), cell lysates (cell lysate group) or a control (control group) were respectively implanted in a subcutaneous pouches in the back of beagle dogs . The implants were harvested 1, 4, 7, 14, 28, 56, 84 days after implantation. Histological findings and stain analyzes of tartrate-resistant acid phosphatase (TRACP) and assays of alkaline phosphatase (ALP) and TRACP were evaluated. The mRNA expression levels of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-beta) were analyzed using semi-quantitative reverse transcription - polymerase chain reactions (RT-PCR). An enzyme-linked immunosorbent assay (ELISA) was used to confirm the protein expression levels of IL-6, COX-2, VEGF and TGF-beta. RESULTS TRACP-positive cells were observed in all groups 7 days after implantation. ALP and TRACP activities in the UCB-MSC group 84 days after implantation were significantly higher than those of the control (P>0.05). Histologic findings after 84 days showed that the osteoid matrix area in the UCB-MSC group was significantly larger than that of the control (P<0.05). The mRNAs levels of IL-1, IL-6 and VEGF in UCB-MSC and cell lysate groups on day 1 were up-regulated compared with the control. The protein levels of IL-6 and VEGF in the UCB-MSC group at day 1 were significantly higher than that of the other groups (P<0.05). CONCLUSIONS It is suggested that a significant release of cytokines by cUCB MSC, 1 day following implantation, could enhance bone regeneration.
Journal of Veterinary Science | 2007
Ji Hey Lim; Chang Su Jung; Ye Eun Byeon; Wan Hee Kim; Jung Hee Yoon; Kyung Sun Kang; Oh Kyeong Kweon
A model that provides reproducible, submaximal yet sufficient spinal cord injury is needed to allow experiments leading to development of therapeutic techniques and prediction of clinical outcome to be conducted. This study describes an experimental model for spinal cord injury that uses three different volumes of balloon inflation and durations of compression to create a controlled gradation outcome in adult dogs. Twenty-seven mongrel dogs were used for this study. A 3-french embolectomy catheter was inserted into the epidural space through a left hemilaminectomy hole at the L4 vertebral arch. Balloons were then inflated with 50, 100, or 150 µl of a contrast agent at the L1 level for 6, 12, or 24 h and spinal canal occlusion (SCO) measured using computed tomography. Olby score was used to evaluate the extent of spinal cord injury and a histopathologic examination was conducted 1 week after surgery. The SCO of the 50, 100, and 150 µl inflations was 22-46%, 51-70%, and 75-89%, respectively (p < 0.05). Olby scores were diminished significantly by a combination of the level of SCO and duration of inflation in all groups. Olby scores in the groups of 150 µl-12 h, 150 µl-24 h, and 100 µl-24 h were 0.5, 0, and 1.7, respectively. Based on these results, a SCO > 50% for 24 h, and > 75% for 12 h induces paraplegia up to a week after spinal cord injury.
Journal of Veterinary Science | 2006
Tae-Hoon Oh; Md. Mizanur Rahman; Ji-Hey Lim; Mi-Sun Park; Dae-yong Kim; Junghee Yoon; Wan Hee Kim; Masanori Kikuchi; Junzo Tanaka; Yoshihisa Koyama; Oh Kyeong Kweon
This study was performed to evaluate the effect of beta-tricalcium phosphate and poly L-lactide-co-glycolide-co-epsilon-caprolactone (TCP/PLGC) membrane in the repair of partial bone defects in canine proximal humerus. Three adult mixed-breed dogs were used during the experimental period. The length of the defect was quarter of the full length of humerus, and width of the defect was quarter of middle diameter of the lateral aspect of humerus. The humeri of each dog were divided into treatment (TCP/PLGC) and control groups. The defect was covered with TCP/PLGC membrane in treatment group. To evaluate regeneration of the bone, computerized tomography (CT) and histopathologic examination were performed. The radiopaque lines were appeared at the original defect sites in TCP/PLGC group but below the original site in control at 4th week. Radiopacity and thickness of the defect sites, and radiopaque lines were more increased at 8th week than those of 4th week. Histopathologic findings revealed fibrous connective tissue migration into the defect and the migration inhibited the structure of new cortex to be placed in the original level in control whereas new cortex growth was found in the level of original line in TCP/PLGC group. However, the new cortical bone in the TCP/PLGC group was thinner and less organized than the adjacent intact cortex, and the amount of new cancellous bones were also scanty. The result suggested that TCP/PLGC membrane is a good guided bone regeneration material to restore the original morphology of humerus in partial defect.