Wan-Heng Wang
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wan-Heng Wang.
Journal of Clinical Investigation | 2008
Wan-Heng Wang; Loretta Mcnatt; Iok-Hou Pang; J. Cameron Millar; Peggy E. Hellberg; Mark H. Hellberg; H. Thomas Steely; Jeffrey S. Rubin; John H. Fingert; Val C. Sheffield; Edwin M. Stone; Abbot F. Clark
Elevated intraocular pressure (IOP) is the principal risk factor for glaucoma and results from excessive impedance of the fluid outflow from the eye. This abnormality likely originates from outflow pathway tissues such as the trabecular meshwork (TM), but the associated molecular etiology is poorly understood. We discovered what we believe to be a novel role for secreted frizzled-related protein-1 (sFRP-1), an antagonist of Wnt signaling, in regulating IOP. sFRP1 was overexpressed in human glaucomatous TM cells. Genes involved in the Wnt signaling pathway were expressed in cultured TM cells and human TM tissues. Addition of recombinant sFRP-1 to ex vivo perfusion-cultured human eyes decreased outflow facility, concomitant with reduced levels of beta-catenin, the Wnt signaling mediator, in the TM. Intravitreal injection of an adenoviral vector encoding sFRP1 in mice produced a titer-dependent increase in IOP. Five days after vector injection, IOP increased 2 fold, which was significantly reduced by topical ocular administration of an inhibitor of a downstream suppressor of Wnt signaling. Thus, these data indicate that increased expression of sFRP1 in the TM appears to be responsible for elevated IOP in glaucoma and restoring Wnt signaling in the TM may be a novel disease intervention strategy for treating glaucoma.
Experimental Eye Research | 2013
Alex H. Wagner; V. Nikhil Anand; Wan-Heng Wang; Jon E. Chatterton; Duo Sun; Allan R. Shepard; Nasreen Jacobson; Iok-Hou Pang; Adam P. DeLuca; Thomas L. Casavant; Todd E. Scheetz; Robert F. Mullins; Terry A. Braun; Abbot F. Clark
The normal gene expression profiles of the tissues in the eye are a valuable resource for considering genes likely to be involved with disease processes. We profiled gene expression in ten ocular tissues from human donor eyes using Affymetrix Human Exon 1.0 ST arrays. Ten different tissues were obtained from six different individuals and RNA was pooled. The tissues included: retina, optic nerve head (ONH), optic nerve (ON), ciliary body (CB), trabecular meshwork (TM), sclera, lens, cornea, choroid/retinal pigment epithelium (RPE) and iris. Expression values were compared with publically available Expressed Sequence Tag (EST) and RNA-sequencing resources. Known tissue-specific genes were examined and they demonstrated correspondence of expression with the representative ocular tissues. The estimated gene and exon level abundances are available online at the Ocular Tissue Database.
Investigative Ophthalmology & Visual Science | 2012
Qiang Yang; Kin-Sang Cho; Huihui Chen; Dekuang Yu; Wan-Heng Wang; Gang Luo; Iok-Hou Pang; Wenyi Guo; Dong Feng Chen
PURPOSE To characterize the microbead-induced ocular hypertension (OHT) mouse model and investigate its potential use for preclinical screening and evaluation of ocular hypotensive agents, we tested the models responses to major antiglaucoma drugs. METHODS Adult C57BL/6J mice were induced to develop OHT unilaterally by intracameral injection of microbeads. The effects of the most commonly used ocular hypotensive drugs, including timolol, brimonidine, brinzolamide, pilocarpine, and latanoprost, on IOP and glaucomatous neural damage were evaluated. Degeneration of retinal ganglion cells (RGCs) and optic nerve axons were quantitatively assessed using immunofluorescence labeling and histochemistry. Thickness of the ganglion cell complex (GCC) was also assessed with spectral-domain optical coherence tomography (SD-OCT). RESULTS A microbead-induced OHT model promptly responded to drugs, such as timolol, brimonidine, and brinzolamide, that lower IOP through suppressing aqueous humor production and showed improved RGC and axon survival as compared to vehicle controls. Accordingly, SD-OCT detected significantly less reduction of GCC thickness in mice treated with all three aqueous production suppressants as compared to the vehicle contol-treated group. In contrast, drugs that increase aqueous outflow, such as pilocarpine and latanoprost, failed to decrease IOP in the microbead-induced OHT mice. CONCLUSIONS Microbead-induced OHT mice carry dysfunctional aqueous outflow facility and therefore offer a unique model that allows selective screening of aqueous production suppressant antiglaucoma drugs or for studying the mechanisms regulating aqueous humor production. Our data set the stage for using GCC thickness assessed by SD-OCT as an imaging biomarker for noninvasive tracking of neuronal benefits of glaucoma therapy in this model.
Investigative Ophthalmology & Visual Science | 2008
Wan-Heng Wang; Loretta Mcnatt; Iok-Hou Pang; Peggy E. Hellberg; John H. Fingert; Mitchell D. McCartney; Abbot F. Clark
PURPOSE To search for and validate potential molecular pathogenic mechanisms in the trabecular meshwork (TM) responsible for the elevated intraocular pressure (IOP) associated with glaucoma. METHODS Gene chip arrays were used to identify differential gene expression in glaucomatous TM tissues. Serum amyloid A (SAA) upregulation was subsequently confirmed with quantitative PCR (QPCR) and ELISA. The effect of SAA on gene expression of cultured human TM cells was tested with gene chip arrays and verified with ELISA, and its effect on IOP was evaluated in the human ocular perfusion organ culture. RESULTS Microarray analysis showed that the expression of SAA2 was increased in TM tissues from donors with glaucoma. This finding was subsequently confirmed by QPCR. The SAA mRNA levels were increased in glaucoma TM tissues by more than 5-fold (P < 0.05) and in cultured TM cells derived from donors with glaucoma by 25-fold (P < 0.05) compared with controls. SAA protein levels in the TM of glaucoma patients were also significantly (P < 0.05) elevated by 2.9-fold. Treatment of cultured human TM cells with recombinant SAA affected gene expression, including a 22-fold up-regulation of interleukin-8 (P < 0.001). SAA increased IOP by approximately 40% (P < 0.05) in the human ocular perfusion organ culture without any observable changes in the morphology of the tissues involved in aqueous outflow. CONCLUSIONS These findings indicate that SAA, which is an acute-phase apolipoprotein that plays important roles in infection, inflammation, and tissue repair, may contribute to the pathogenic changes to the TM in glaucoma.
Investigative Ophthalmology & Visual Science | 2012
Weiming Mao; J. Cameron Millar; Wan-Heng Wang; Yang Liu; Robert J. Wordinger; Jeffrey S. Rubin; Iok-Hou Pang; Abbot F. Clark
PURPOSE We previously discovered elevated levels of secreted frizzled-related protein 1 (sFRP1), the Wnt signaling pathway inhibitor, in the glaucomatous trabecular meshwork (GTM), and found that key canonical Wnt signaling pathway genes are expressed in the trabecular meshwork (TM). The purpose of our study was to determine whether a functional canonical Wnt signaling pathway exists in the human TM (HTM). METHODS Western immunoblotting and/or immunofluorescent microscopy were used to study β-catenin translocation as well as the actin cytoskeleton in transformed and primary HTM cells. A TCF/LEF luciferase assay was used to study functional canonical Wnt signaling, which was confirmed further by WNT3a-induced expression of a pathway target gene, AXIN2, via quantitative PCR. Intravitreal injection of an Ad5 adenovirus expressing Dickkopf-related protein-1 (DKK1) was used to study the in vivo effect of canonical Wnt signaling on IOP in mice. RESULTS WNT3a induced β-catenin translocation in the HTM, which was blocked by co-treatment with sFRP1. Similarly, WNT3a enhanced luciferase levels in TCF/LEF luciferase assays, which also were blocked by sFRP1. Furthermore, AXIN2 expression was elevated significantly by WNT3a. However, neither WNT3a nor sFRP1 affected actin cytoskeleton organization, which theoretically could be regulated by noncanonical Wnt signaling in HTM cells. Exogenous DKK1, a specific inhibitor for the canonical Wnt signaling pathway, or sFRP1 elevated mouse IOP to equivalent levels. CONCLUSIONS There is a canonical Wnt signaling pathway in the TM, and this canonical Wnt pathway, but not the noncanonical Wnt signaling pathway, regulates IOP.
Molecular Vision | 2001
Wan-Heng Wang; Loretta Mcnatt; Allan R. Shepard; Nasreen Jacobson; Darryl Y. Nishimura; Edwin M. Stone; Val C. Sheffield; Abbot F. Clark
Experimental Eye Research | 2005
Iok-Hou Pang; Wan-Heng Wang; Abbot F. Clark
Archive | 2002
Mark R. Hellberg; Abbott F. Clark; Iok-Hou Pang; Peggy E. Hellberg; Loretta Mcnatt; Wan-Heng Wang
Archive | 2006
Peter G. Klimko; Mark R. Hellberg; Wan-Heng Wang; Abbot F. Clark; Loretta Mcnatt
Archive | 2001
Abbot F. Clark; John H. Fingert; Loretta Mcnatt; Edwin M. Stone; Wan-Heng Wang