Wan Teng
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wan Teng.
Plant Physiology | 2015
Baoyuan Qu; Xue He; Jing Wang; Yan-Yan Zhao; Wan Teng; An Shao; Xue Qiang Zhao; Wenying Ma; Junyi Wang; Bin Li; Zhensheng Li; Yiping Tong
The transcription factor TaNFYA-B1 is up-regulated by low-nitrogen and low-phosphorus treatment in wheat seedlings, and overexpressing this gene increases the grain yield of wheat under differing nitrogen and phosphorus supply levels. Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input.
Journal of Experimental Botany | 2013
Wan Teng; Yan Deng; Xinping Chen; Xiao-Feng Xu; Ri-Yuan Chen; Yang Yang Lv; Yan-Yan Zhao; Xue Qiang Zhao; Xue He; Bin Li; Yiping Tong; Fusuo Zhang; Zhensheng Li
The adaptations of root morphology, physiology, and biochemistry to phosphorus supply have been characterized intensively. However, characterizing these adaptations at molecular level is largely neglected under field conditions. Here, two consecutive field experiments were carried out to investigate the agronomic traits and root traits of wheat (Triticum aestivum L.) at six P-fertilizer rates. Root samples were collected at flowering to investigate root dry weight, root length density, arbusular-mycorrhizal colonization rate, acid phosphatase activity in rhizosphere soil, and expression levels of genes encoding phosphate transporter, phosphatase, ribonucleases, and expansin. These root traits exhibited inducible, inhibitory, or combined responses to P deficiency, and the change point for responses to P supply was at or near the optimal P supply for maximum grain yield. This research improves the understanding of mechanisms of plant adaptation to soil P in intensive agriculture and provides useful information for optimizing P management based on the interactions between soil P dynamics and root processes.
Plant Physiology | 2015
Xue He; Baoyuan Qu; Wenjing Li; Xue Qiang Zhao; Wan Teng; Wenying Ma; Yongzhe Ren; Bin Li; Zhensheng Li; Yiping Tong
A nitrate-inducible transcription factor affects nitrate responses that enable wheat to yield more with less fertilizer. Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root’s ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer.
PLOS ONE | 2014
Yan Deng; Keru Chen; Wan Teng; Ai Zhan; Yiping Tong; Gu Feng; Zhenling Cui; Fusuo Zhang; Xinping Chen
Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg−1, and the threshold indicating a significant environmental risk was about 15 mg kg−1, which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg−1, indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots.
Frontiers in Plant Science | 2017
Wan Teng; Yan-Yan Zhao; Xue Qiang Zhao; Xue He; Wenying Ma; Yan Deng; Xinping Chen; Yiping Tong
The PHT1 family of phosphate (Pi) transporters mediates phosphorus (P) uptake and re-mobilization in plants. A genome-wide sequence analysis of PHT1 genes in wheat (Triticum aestivum) was conducted, and their expression locations and responses to P availability were further investigated. We cloned 21 TaPHT1 genes from the homologous alleles at TaPHT1.1 to 1.10 through screening a BAC library and amplifying genomic sequences. The TaPHT1 transporters were clustered into five branches in the phylogenetic tree of PHT1 proteins, and the TaPHT1 genes from a given branch shared high similarities in sequences, expression locations, and responses to P availability. The seven tested PHT1 genes all showed Pi-transport activity in yeast (Saccharomyces cerevisiae) cells grown under both low Pi and high Pi conditions. The expression of TaPHT1.1/1.9, 1.2, and 1.10 were root specific. The expression of these TaPHT1 genes at flowering positively correlated with P uptake after stem elongation across three P application rates and two wheat varieties in a field experiment. Therefore, modification of PHT1 expression may improve P use efficiency in a broad regime of P availability.
Scientific Reports | 2016
Xiang Ouyang; Xia Hong; Xue Qiang Zhao; Wei Zhang; Xue He; Wenying Ma; Wan Teng; Yiping Tong
MiR399 and its target PHOSPHATE2 (PHO2) play pivotal roles in phosphate signaling in plants. Loss of function mutation in PHO2 leads to excessive Pi accumulation in shoots and growth retardation in diploid plants like Arabidopsis thaliana and rice (Oryza sativa). Here we isolated three PHO2 homologous genes TaPHO2-A1, -B1 and -D1 from hexaploid wheat (Triticum aestivum). These TaPHO2 genes all contained miR399-binding sites and were able to be degraded by tae-miR399. TaPHO2-D1 was expressed much more abundantly than TaPHO2-A1 and -B1. The ion beam-induced deletion mutants were used to analyze the effects of TaPHO2s on phosphorus uptake and plant growth. The tapho2-a1, tapho2-b1 and tapho2-d1 mutants all had significant higher leaf Pi concentrations than did the wild type, with tapho2-d1 having the strongest effect, and tapho2-b1 the weakest. Two consecutive field experiments showed that knocking out TaPHO2-D1 reduced plant height and grain yield under both low and high phosphorus conditions. However, knocking out TaPHO2-A1 significantly increased phosphorus uptake and grain yield under low phosphorus conditions, with no adverse effect on grain yield under high phosphorus conditions. Our results indicated that TaPHO2s involved in phosphorus uptake and translocation, and molecular engineering TaPHO2 shows potential in improving wheat yield with less phosphorus fertilizer.
Plant Physiology | 2017
An Shao; Wenying Ma; Xue Qiang Zhao; Mengyun Hu; Xue He; Wan Teng; Hui Li; Yiping Tong
Overexpression of the auxin biosynthesis gene TaTAR2.1-3A in wheat increases grain yield under different nitrogen nutritional conditions. Controlling the major auxin biosynthetic pathway to manipulate auxin content could be a target for genetic engineering of crops with desired traits, but little progress had been made because low or high auxin contents often cause developmental inhibition. Here, we performed a genome-wide analysis of bread wheat (Triticum aestivum) to identify the Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) genes that function in the tryptophan-dependent pathway of auxin biosynthesis. Sequence mining together with gene cloning identified 15 TaTAR genes, among which 12 and three genes were phylogenetically close to Arabidopsis (Arabidopsis thaliana) AtTAR2 and AtTAR3, respectively. TaTAR2.1 had the most abundant transcripts in the TaTAR2 genes and was expressed mainly in roots and up-regulated by low nitrogen (N) availability. Knockdown of TaTAR2.1 caused vegetative and reproductive deficiencies and impaired lateral root (LR) growth under both high- and low-N conditions. Overexpressing TaTAR2.1-3A in wheat enhanced LR branching, plant height, spike number, grain yield, and aerial N accumulation under different N supply levels. In addition, overexpressing TaTAR2.1-3A in Arabidopsis elevated auxin accumulation in the primary root tip, LR tip, LR primordia, and cotyledon and hypocotyl and increased primary root length, visible LR number, and shoot fresh weight under high- and low-N conditions. Our results indicate that TaTAR2.1 is critical for wheat growth and also shows potential for genetic engineering to reach the aim of improving the grain yield of wheat.
Plant Physiology | 2017
An Shao; Wenying Ma; Xue Qiang Zhao; Mengyun Hu; Xue He; Wan Teng; Hui Li; Yiping Tong
Overexpression of the auxin biosynthesis gene TaTAR2.1-3A in wheat increases grain yield under different nitrogen nutritional conditions. Controlling the major auxin biosynthetic pathway to manipulate auxin content could be a target for genetic engineering of crops with desired traits, but little progress had been made because low or high auxin contents often cause developmental inhibition. Here, we performed a genome-wide analysis of bread wheat (Triticum aestivum) to identify the Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) genes that function in the tryptophan-dependent pathway of auxin biosynthesis. Sequence mining together with gene cloning identified 15 TaTAR genes, among which 12 and three genes were phylogenetically close to Arabidopsis (Arabidopsis thaliana) AtTAR2 and AtTAR3, respectively. TaTAR2.1 had the most abundant transcripts in the TaTAR2 genes and was expressed mainly in roots and up-regulated by low nitrogen (N) availability. Knockdown of TaTAR2.1 caused vegetative and reproductive deficiencies and impaired lateral root (LR) growth under both high- and low-N conditions. Overexpressing TaTAR2.1-3A in wheat enhanced LR branching, plant height, spike number, grain yield, and aerial N accumulation under different N supply levels. In addition, overexpressing TaTAR2.1-3A in Arabidopsis elevated auxin accumulation in the primary root tip, LR tip, LR primordia, and cotyledon and hypocotyl and increased primary root length, visible LR number, and shoot fresh weight under high- and low-N conditions. Our results indicate that TaTAR2.1 is critical for wheat growth and also shows potential for genetic engineering to reach the aim of improving the grain yield of wheat.
Plant Macronutrient Use Efficiency#R##N#Molecular and Genomic Perspectives in Crop Plants | 2017
Xue He; Wan Teng; Yiping Tong
Abstract Plant breeding has greatly increased crop productivity and the demand for macronutrients, including nitrogen (N) and potassium (K). The use efficiency of N and K is controlled by complex gene networks that coordinate uptake, assimilation, remobilization, and storage of these nutrients. In the last decade, much progress has been achieved in breeding N-efficient crops by manipulating the expression of the genes that are associated with root growth and root growth responses to N availability, N transport, and assimilation. It is also important to engineer N use efficiency by increasing postanthesis N uptake and delaying leaf senescence. To date, molecular breeding for K use efficiency is mainly attained by modifying the activities of K channels and transporters that mediate K uptake, redistribution, and cellular K+ homeostasis. In this chapter we review the transgenic approaches in improving N and K use efficiency in plants.
Molecular Breeding | 2014
Pei Cao; Yongzhe Ren; Kunpu Zhang; Wan Teng; Xue Qiang Zhao; Zhenying Dong; Xin Liu; Huanju Qin; Zhensheng Li; Daowen Wang; Yiping Tong