Wan Teng Lin
Tunghai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wan Teng Lin.
Chinese Journal of Physiology | 2009
Chi Chang Huang; Tien Jen Lin; Yi Fa Lu; Chun Chieh Chen; Chih Yang Huang; Wan Teng Lin
Recently, we showed that L-arginine (L-Arg) supplementation could attenuate acute exercise-induced oxidative and inflammatory stress in aging rats. In this study, we investigate whether L-Arg supplementation protects cellular oxidative stress, inflammation, or the mitochondrial DNA 4834-bp large deletion (mtDNA4834 deletion) in 14-week-old young rats tissues during exhaustive exercise. Rats were randomly divided into four groups: sedentary control (SC); SC with L-Arg treatment (SC+Arg); exhaustive exercise (E); and exhaustive exercise with L-Arg treatment (E+Arg). Rats in the SC+Arg and E+Arg groups received supplemental 2% L-Arg diet. Rats in groups E and E+Arg performed an exhaustive running test on a treadmill. The results showed a significant increase in xanthine oxidase (XO) and myeloperoxidase (MPO) activities and lipid peroxide (malondialdehyde; MDA) levels of muscular, hepatic, and renal tissues in exercised rats as compared with sedentary rats. The increased XO, MPO, and MDA levels of these tissues significantly decreased in exercised rats supplemented with L-Arg. However, exhaustive exercise had no effect on mtDNA4834 deletions of muscular and hepatic tissues. The activities of creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine (CRE), lactate, uric acid, non-esterified fatty acid (NEFA), and D-3-hydroxybutyrate in the plasma significantly increased in the exercised rats compared with the sedentary rats, while the CK, lactate and uric acid levels in the plasma significantly decreased in L-Arg-supplemented exercised rats. These findings suggest that L-Arg supplementation reduces the oxidative damage to and inflammatory response in skeletal muscles, the liver, and kidneys caused by exhaustive exercise in young rats.
European Journal of Applied Physiology | 2010
Chi Chang Huang; Wan Teng Lin; Feng Lin Hsu; Pi Wen Tsai; Chia Chung Hou
Exhaustive exercise and endurance exercise training modify the physiological status of the body differently. The present study aimed to evaluate the alteration in biochemical composition with exhaustive and endurance exercises in rats using metabolomics strategy. The metabolite profile of liver tissue was investigated on gas chromatography–mass spectrometry (GC–MS). Data further underwent partial least-squares-discriminant analysis (PLS-DA) to compare the effects on metabolites in sedentary control, exhaustively exercised and endurance trained rats. GC–MS detected 115 highly reproducible peaks in chromatograms from individual liver tissue extracts, and we identified 55 of them. The three groups showed significant differences in metabolic profile. Changes in liver metabolism involved metabolites such as amino acids, fatty acids, organic acids, and carbohydrates. Endurance training elevated the greater rate of tricarboxylic acid cycle and antioxidant activity, and exhaustive exercise led to accumulated urea markers and an inflammation response in liver. In addition, GC–MS-based metabolomic analysis is a promising tool to investigate a pathological status with different exercise programs.
Cell Biochemistry and Function | 2009
Wan Teng Lin; Chi Chang Huang; Tien Jen Lin; Jiun Rong Chen; Ming Jer Shieh; Hsiang Chi Peng; Suh Ching Yang; Chih Yang Huang
This study examined the effects of β‐carotene on antioxidant status in rats with chronic alcohol consumption. At the beginning of experiment (week 0), according to both the plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, rats (n = 24) were divided into 3 groups and fed with a standard diet (group C), a diet containing ethanol (group E), or a diet containing ethanol and β‐carotene (group E+B). After 10 weeks, plasma AST and ALT, fat accumulation in the liver, antioxidant enzyme activities in erythrocytes and the liver, malondialdehyde (MDA), and α‐tocopherol and retinol in plasma and hepatic samples were analyzed. The chronic alcohol diet significantly increased AST and ALT levels in plasma, and these changes were prevented by supplementing the diet with β‐carotene. Glutathione (GSH) in erythrocytes and in the liver was significantly elevated in rats fed with a diet containing β‐carotene. The results indicate that β‐carotene supplementation can prevent ethanol‐induced liver damage and increase GSH concentrations in erythrocytes and the liver. Copyright
Molecules | 2013
Chi Chang Huang; Yi Ming Chen; Dean Chuan Wang; Chien Chao Chiu; Wan Teng Lin; Chih Yang Huang; Mei Chich Hsu
Panax quinquefolium L. (American Ginseng, AG) is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day) supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n = 8 per group): supplementation with water (vehicle) and low-dose (AG-1X), medium-dose (AG-2X) and high-dose (AG-5X) AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg). Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.
Molecules | 2013
Chi Chang Huang; Wen Ching Huang; Suh Ching Yang; Chih Chi Chan; Wan Teng Lin
Several studies have been shown that accelerated apoptosis is involved in post-exercise lymphocytopenia and tissue damage after high-intensity exercise. Ganoderma tsugae (GT) is one of the well-known medicinal mushrooms that possess various pharmacological functions. This mushroom has traditionally been used for health promotion purposes. This study investigates the hepatoprotective effects of GT on exhaustive exercise-induced liver damage. Twenty-four male Sprague-Dawley rats were randomly divided into four groups and designated as exhaustive exercise only (E), exhaustive exercise with low dosage (EL), medium dosage (EM) and high dosage (EH) GT at 0, 0.1875, 0.9375 and 1.875 g/kg/day, respectively. After 30 days all rats were euthanized immediately after an exhaustive running challenge on a motorized treadmill. The rat livers were immediately harvested. Evidence of apoptotic liver cell death was revealed using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspases mediated cascade events. DNA fragmentation, an apoptosis process, can be examined using TUNEL assay. A few TUNEL-positive hepatocytes, compared to the exercise only group, were observed in the livers from exhaustive animals supplemented with GT. Immunoblot analysis also showed that caspase-6-mediated specific cleavage of lamin A/C was increased significantly in the livers of group E, but was significantly decreased in the EM and EH groups. Our observations demonstrate that GT possesses anti-apoptotic and hepatoprotective potential after exhaustive exercise.
Food & Nutrition Research | 2016
Chih Yang Huang; Wei Jen Ting; Jing Yi Yang; Wan Teng Lin
Background Resveratrol is a Sirt-1-specific activator, which also exerts cardioprotective effects that regulate redox signalling during oxidative stress and autophagy during cardiovascular disease (CVD). Objective This study investigated the protective effects of resveratrol against hydrogen peroxide-induced damage in cardiomyocytes. Design In this article, hydrogen peroxide-induced autophagy and apoptosis in H9c2 cardiomyoblasts were studied at an increasing concentration from 0 to 100 µM. Results Resveratrol pretreatment with concentrations of 10, 20, and 50 µM inhibits autophagic apoptosis by increasing p-Akt and Bcl-2 protein levels in H9c2 cells. Interestingly, resveratrol treatment activates the Beclin-1, LC3, p62, and the lysosome-associated protein LAMP2a within 24 h of administration. Conclusions These results suggest that resveratrol-regulated autophagy may play a role in degrading damaged organelles in H9c2 cells rather than causing apoptosis, and this may be a possible mechanism by which resveratrol protects the heart during CVD.
Molecules | 2013
Nai Wen Kan; Wen Ching Huang; Wan Teng Lin; Chih Yang Huang; Kuo Ching Wen; Hsiu-Mei Chiang; Chi Chang Huang; Mei Chich Hsu
Ixora parviflora, a species of the Rubiaceae, is rich in polyphenols and flavonoids, and has been traditionally used as a folk medicine. An I. parviflora extract (IPE) has great antioxidant activity in vitro, including a scavenging effect on superoxide radicals, reducing power, and ferrous ion-chelating ability. However, whether IPE is efficacious against oxidative damage in vivo is not known. The purpose of this study was to determine the protective effects of IPE treatment on hepatic oxidative stress and antioxidant defenses after exhaustive exercise in mice. Fifty male C57BL/6 mice (6 week old) were randomly divided into five groups and designated a sedentary control with vehicle (C), and exhaustive exercise with vehicle (IPE0), low dosage (IPE10), medium dosage (IPE50) and high dosage (IPE100) of IPE at 0, 10, 50, and 100 mg/kg, respectively. After a single bout of exhaustive swimming exercise challenge, levels of blood ammonia and creatine kinase (CK), and hepatic superoxide dismutase (SOD) protein expression, thiobarbituric acid-reactive substance (TBARS), and gp91phox, p22phox, and p47phox subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expressions in the IPE0 group were significantly affected compared to those of the C group, but they were all significantly inhibited by the IPE treatments. Results of the present in vivo study in mice indicate that I. parviflora extract possesses antioxidative and hepatoprotective potential following exhaustive exercise.
Evidence-based Complementary and Alternative Medicine | 2013
Chi Chang Huang; Wen Dee Chiang; Wen Ching Huang; Chih Yang Huang; Mei Chich Hsu; Wan Teng Lin
This study investigates whether a 12-week swimming exercise training can prevent liver damage or senescence associated biomarkers in an experimental aging model in rats. Twenty-three male Sprague-Dawley rats were divided into four groups: vehicle treatment with sedentary control (C, n = 6), aging induction with sedentary (A, n = 6), vehicle treatment with swimming exercise (SW, n = 5), and aging induction with swimming exercise (A + SW, n = 6). Rats in groups A and AS received intraperitoneal d-galactose injections (150 mg/kg/day) for 12 weeks to induce aging. Rats in groups SW and A + SW were subjected to swimming exercise training for 12 weeks. Body weight, liver weight, epididymal fat mass, blood biochemistry, and liver pathology were performed at the end of the experiment. Hepatic senescence protein markers such as β-galactosidase, p53, and p21, as well as the inflammatory mediator, IL-6, were examined. The d-galactose-treated rats exhibited increases in AST and γ-GT plasma levels and β-galactosidase protein expression compared to the control group. Swimming exercise significantly reduced BW, epididymal fat mass, γ-GT activity, and p53, p21, and IL-6 protein levels compared to the aging group. These results suggest that a 12-week swimming exercise program suppresses senescence markers and downregulates inflammatory mediator in the liver tissues of d-galactose-induced aging rats.
Food & Nutrition Research | 2016
Wen Dee Chiang; Chih Yang Huang; Catherine Reena Paul; Zong Yan Lee; Wan Teng Lin
Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective In this study, alcalase treatment derived potato protein hydrolysate (APPH) with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD)-fed aging rats. Design Twenty-four-month-old SD rats were randomly divided into six groups (n=8): aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day) APPH treatment, HFD with moderate (45 mg/kg/day) APPH treatment, HFD with high (75 mg/kg/day) APPH treatment, and HFD with probucol. Results APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day), moderate (45 mg/kg/day), and high (75 mg/kg/day) doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.
International Journal of Molecular Sciences | 2015
Wei Syun Hu; Wei Jen Ting; Wen Dee Chiang; Peiying Pai; Yu Lan Yeh; Chung Ho Chang; Wan Teng Lin; Chih Yang Huang
The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway.