Wan-Xiang Li
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wan-Xiang Li.
The EMBO Journal | 1998
Gianinna Brigneti; Olivier Voinnet; Wan-Xiang Li; Liang‐Hui Ji; Shou‐Wei Ding; David C. Baulcombe
Post‐transcriptional gene silencing (PTGS) of a green fluorescent protein (GFP) transgene is suppressed in Nicotiana benthamiana plants infected with potato virus Y (PVY) or with cucumber mosaic virus (CMV), but not in plants infected with potato virus X (PVX). By expressing PVY and CMV‐encoded proteins in a PVX vector we have shown that the viral suppressors of gene silencing are the HCPro of PVY and the 2b protein of CMV. The HCPro acts by blocking the maintenance of PTGS in tissues where silencing had already been set, whereas the 2b protein prevents initiation of gene silencing at the growing points of the plants. Combined with previous findings that viruses are both activators and targets of PTGS, these data provide compelling evidence that PTGS represents a natural mechanism for plant protection against viruses.
Nature | 2005
Rui Lu; M Maduro; Feng Li; Hongwei Li; G Broitman-Maduro; Wan-Xiang Li; Shou-Wei Ding
The worm Caenorhabditis elegans is a model system for studying many aspects of biology, including host responses to bacterial pathogens, but it is not known to support replication of any virus. Plants and insects encode multiple Dicer enzymes that recognize distinct precursors of small RNAs and may act cooperatively. However, it is not known whether the single Dicer of worms and mammals is able to initiate the small RNA-guided RNA interference (RNAi) antiviral immunity as occurs in plants and insects. Here we show complete replication of the Flock house virus (FHV) bipartite, plus-strand RNA genome in C. elegans. We show that FHV replication in C. elegans triggers potent antiviral silencing that requires RDE-1, an Argonaute protein essential for RNAi mediated by small interfering RNAs (siRNAs) but not by microRNAs. This immunity system is capable of rapid virus clearance in the absence of FHV B2 protein, which acts as a broad-spectrum RNAi inhibitor upstream of rde-1 by targeting the siRNA precursor. This work establishes a C. elegans model for genetic studies of animal virus–host interactions and indicates that mammals might use a siRNA pathway as an antiviral response.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Qingfa Wu; Yingjun Luo; Rui Lu; Nelson C. Lau; Eric C. Lai; Wan-Xiang Li; Shou-Wei Ding
In response to infection, invertebrates process replicating viral RNA genomes into siRNAs of discrete sizes to guide virus clearance by RNA interference. Here, we show that viral siRNAs sequenced from fruit fly, mosquito, and nematode cells were all overlapping in sequence, suggesting a possibility of using siRNAs for viral genome assembly and virus discovery. To test this idea, we examined contigs assembled from published small RNA libraries and discovered five previously undescribed viruses from cultured Drosophila cells and adult mosquitoes, including three with a positive-strand RNA genome and two with a dsRNA genome. Notably, four of the identified viruses exhibited only low sequence similarities to known viruses, such that none could be assigned into an existing virus genus. We also report detection of virus-derived PIWI-interacting RNAs (piRNAs) in Drosophila melanogaster that have not been previously described in any other host species and demonstrate viral genome assembly from viral piRNAs in the absence of viral siRNAs. Thus, this study provides a powerful culture-independent approach for virus discovery in invertebrates by assembling viral genomes directly from host immune response products without prior virus enrichment or amplification. We propose that invertebrate viruses discovered by this approach may include previously undescribed human and vertebrate viral pathogens that are transmitted by arthropod vectors.
The Plant Cell | 2007
Juan A. Díaz-Pendón; Feng Li; Wan-Xiang Li; Shou-Wei Ding
We investigated the genetic pathway in Arabidopsis thaliana targeted during infection by cucumber mosaic virus (CMV) 2b protein, known to suppress non-cell-autonomous transgene silencing and salicylic acid (SA)–mediated virus resistance. We show that 2b expressed from the CMV genome drastically reduced the accumulation of 21-, 22-, and 24-nucleotide classes of viral small interfering RNAs (siRNAs) produced by Dicer-like4 (DCL4), DCL2, and DCL3, respectively. The defect of a CMV 2b–deletion mutant (CMV-Δ2b) in plant infection was efficiently rescued in Arabidopsis mutants producing neither 21- nor 22-nucleotide viral siRNAs. Since genetic analysis further identifies a unique antiviral role for DCL3 upstream of DCL4, our data indicate that inhibition of the accumulation of distinct viral siRNAs plays a key role in 2b suppression of antiviral silencing. Strikingly, disease symptoms caused by CMV-Δ2b in Arabidopsis mutants defective in antiviral silencing were as severe as those caused by CMV, demonstrating an indirect role for the silencing suppressor activity in virus virulence. We found that production of CMV siRNAs without 2b interference depended largely on RNA-dependent RNA polymerase 1 (RDR1) inducible by SA. Given the known role of RDR6-dependent transgene siRNAs in non-cell-autonomous silencing, our results suggest a model in which 2b inhibits the production of RDR1-dependent viral siRNAs that confer SA-dependent virus resistance by directing non-cell-autonomous antiviral silencing.
The EMBO Journal | 1995
Shou-Wei Ding; Wan-Xiang Li; R. H. Symons
We recently identified a new cucumovirus‐specific gene (2b) which is encoded by RNA 2 of the cucumber mosaic cucumovirus (CMV) tripartite RNA genome and whose coding sequence overlaps the C‐terminal 69 codons of ORF 2a encoding the RNA polymerase protein. We have now found that although a CMV mutant lacking ORF 2b accumulated in the inoculated cotyledons of cucumber plants, it was unable to spread systemically, demonstrating involvement of 2b in long distance movement. The same mutant infected tobacco systemically with a much reduced virulence and delayed appearance of symptoms, indicating that 2b may contribute to long distance movement in this host. Deletion of the overlapping C‐terminal part of ORF 2a did not change infectivity of the mutant in either host species, ruling out 2a mutation as the reason for the change of phenotype. Further infectivity studies with mutants containing partial deletions in ORF 2b further supported the conclusion that 2b encodes a host‐specific long distance movement function. Sequence analysis revealed that 2b may represent a novel naturally occurring hybrid gene important to the evolutionary formation of the cucumovirus group and that it could provide a genetic basis for the wide host range of these viruses.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Xianbing Wang; Qingfa Wu; Takao Ito; Fabrizio Cillo; Wan-Xiang Li; Xuemei Chen; Jialin Yu; Shou-Wei Ding
In diverse eukaryotic organisms, Dicer-processed, virus-derived small interfering RNAs direct antiviral immunity by RNA silencing or RNA interference. Here we show that in addition to core dicing and slicing components of RNAi, the RNAi-mediated viral immunity in Arabidopsis thaliana requires host RNA-directed RNA polymerase (RDR) 1 or RDR6 to produce viral secondary siRNAs following viral RNA replication-triggered biogenesis of primary siRNAs. We found that the two antiviral RDRs exhibited specificity in targeting the tripartite positive-strand RNA genome of cucumber mosaic virus (CMV). RDR1 preferentially amplified the 5′-terminal siRNAs of each of the three viral genomic RNAs, whereas an increased production of siRNAs targeting the 3′ half of RNA3 detected in rdr1 mutant plants appeared to be RDR6-dependent. However, siRNAs derived from a single-stranded 336-nucleotide satellite RNA of CMV were not amplified by either antiviral RDR, suggesting avoidance of the potent RDR-dependent silencing as a strategy for the molecular parasite of CMV to achieve preferential replication. Our work thus identifies a distinct mechanism for the amplification of immunity effectors, which together with the requirement for the biogenesis of endogenous siRNAs, may play a role in the emergence and expansion of eukaryotic RDRs.
The Plant Cell | 2011
Xianbing Wang; Juan Jovel; Petchthai Udomporn; Ying Wang; Qingfa Wu; Wan-Xiang Li; Virginie Gasciolli; Hervé Vaucheret; Shou-Wei Ding
This work identifies cooperative action of ARGONAUTE1 and ARGONAUTE2 in virus resistance conferred by 21-nucleotide virus-derived small interfering RNAs (siRNAs). It also reveals that 22-nucleotide viral siRNAs do not guide efficient antiviral defense, demonstrating a qualitative difference between 21- and 22-nucleotide classes of siRNAs in RNA silencing. Arabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway. We show that production of the viral secondary siRNAs targeting CMV-Δ2b requires SUPPRESSOR OF GENE SILENCING3 and DICER-LIKE4 (DCL4) in addition to RDR6. Examination of 25 single, double, and triple mutants impaired in nine ARGONAUTE (AGO) genes combined with coimmunoprecipitation and deep sequencing identifies an essential function for AGO1 and AGO2 in defense against CMV-Δ2b, which act downstream the biogenesis of viral secondary siRNAs in a nonredundant and cooperative manner. Our findings also illustrate that dicing of the viral RNA precursors of primary and secondary siRNA is insufficient to confer virus resistance. Notably, although DCL2 is able to produce abundant viral secondary siRNAs in the absence of DCL4, the resultant 22-nucleotide viral siRNAs alone do not guide efficient silencing of CMV-Δ2b. Possible mechanisms for the observed qualitative difference in RNA silencing between 21- and 22-nucleotide secondary siRNAs are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Bin Yu; Liu Bi; Binglian Zheng; Lijuan Ji; David Chevalier; Manu Agarwal; Wan-Xiang Li; Thierry Lagrange; John C. Walker; Xuemei Chen
Proteins containing the forkhead-associated domain (FHA) are known to act in biological processes such as DNA damage repair, protein degradation, and signal transduction. Here we report that DAWDLE (DDL), an FHA domain-containing protein in Arabidopsis, acts in the biogenesis of miRNAs and endogenous siRNAs. Unlike mutants of genes known to participate in the processing of miRNA precursors, such as dcl1, hyponastic leaves1, and serrate, ddl mutants show reduced levels of pri-miRNAs as well as mature miRNAs. Promoter activity of MIR genes, however, is not affected by ddl mutations. DDL is an RNA binding protein and is able to interact with DCL1. In addition, we found that SNIP1, the human homolog of DDL, is involved in miRNA biogenesis and interacts with Drosha. Therefore, we uncovered an evolutionarily conserved factor in miRNA biogenesis. We propose that DDL participates in miRNA biogenesis by facilitating DCL1 to access or recognize pri-miRNAs.
The EMBO Journal | 2000
Andrew P. Lucy; Hui-Shan Guo; Wan-Xiang Li; Shou‐Wei Ding
Post‐transcriptional gene silencing (PTGS) is a homology‐dependent RNA degradation process that may target RNA exclusively in the cytoplasm. In plants, PTGS functions as a natural defense mechanism against viruses. We reported previously that the 2b protein encoded by cucumber mosaic cucumovirus (CMV) is a virulence determinant and a suppressor of PTGS initiation in transgenic Nicotiana benthamiana. By fusion with the green fluorescent protein, we now show that the CMV 2b protein localizes to the nuclei of tobacco suspension cells and whole plants via an arginine‐rich nuclear localization signal, 22KRRRRR27. We further demonstrate that the nuclear targeting of the 2b protein is required for the efficient suppression of PTGS, indicating that PTGS may be blocked in the nucleus. In addition, our data indicate that the PTGS suppressor activity is important, but not sufficient, for virulence determination by the 2b protein.
The EMBO Journal | 1999
Hong‐Wei Li; Andrew P. Lucy; Hui-Shan Guo; Wan-Xiang Li; Liang‐Hui Ji; Sek-Man Wong; Shou-Wei Ding
The 2b protein encoded by cucumber mosaic cucumovirus (Cmv2b) acts as an important virulence determinant by suppressing post‐transcriptional gene silencing (PTGS), a natural plant defence mechanism against viruses. We report here that the tomato aspermy cucumovirus 2b protein (Tav2b), when expressed from the unrelated tobacco mosaic tobamovirus (TMV) RNA genome, activates strong host resistance responses to TMV in tobacco which are typical of the gene‐for‐gene disease resistance mechanism. Domain swapping between Cmv2b, which does not elicit these responses, and Tav2b, revealed functional domains in Tav2b critical for triggering virus resistance and hypersensitive cell death. Furthermore, substitution of two amino acids from Tav2b by those found at the same positions in Cmv2b, Lys21→Val and Arg28→Ser, abolished the ability to induce hypersensitive cell death and virus resistance. However, in Nicotiana benthamiana, a species related to tobacco, Tav2b functions as a virulence determinant and suppresses PTGS. Thus, a viral suppressor of the host gene silencing defence mechanism is the target of another independent host resistance mechanism. Our results provide new insights into the complex molecular strategies employed by viruses and their hosts for defence, counter‐defence and counter counter‐defence.