Wanbo Tai
New York Blood Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wanbo Tai.
Antiviral Research | 2016
Hongjie Qiu; Shihui Sun; He Xiao; Jiannan Feng; Yan Guo; Wanbo Tai; Yufei Wang; Lanying Du; Guangyu Zhao; Yusen Zhou
Abstract Middle East respiratory syndrome coronavirus (MERS-CoV) is continuously spreading and causing severe and fatal acute respiratory disease in humans. Prophylactic and therapeutic strategies are therefore urgently needed to control MERS-CoV infection. Here, we generated a humanized monoclonal antibody (mAb), designated hMS-1, which targeted the MERS-CoV receptor-binding domain (RBD) with high affinity. hMS-1 significantly blocked MERS-CoV RBD binding to its viral receptor, human dipeptidyl peptidase 4 (hDPP4), potently neutralized infection by a prototype MERS-CoV, and effectively cross-neutralized evolved MERS-CoV isolates through recognizing highly conserved RBD epitopes. Notably, single-dose treatment with hMS-1 completely protected hDPP4 transgenic (hDPP4-Tg) mice from lethal infection with MERS-CoV. Taken together, our data suggest that hMS-1 might be developed as an effective immunotherapeutic agent to treat patients infected with MERS-CoV, particularly in emergent cases.
Virology | 2016
Wanbo Tai; Guangyu Zhao; Shihun Sun; Yan Guo; Yufei Wang; Xinrong Tao; Chien Te K Tseng; Fang Li; Shibo Jiang; Du Lanying; Yusen Zhou
Abstract Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) was first identified in 2012, and it continues to threaten human health worldwide. No MERS vaccines are licensed for human use, reinforcing the urgency to develop safe and efficacious vaccines to prevent MERS. MERS-CoV spike protein forms a trimer, and its receptor-binding domain (RBD) serves as a vaccine target. Nevertheless, the protective efficacy of RBD in its native trimeric form has never been evaluated. In this study, a trimeric protein, RBD-Fd, was generated by fusing RBD with foldon trimerization motif. It bound strongly to the receptor of MERS-CoV, dipeptidyl peptidase 4 (DPP4), and elicited robust RBD-specific neutralizing antibodies in mice, maintaining long-term neutralizing activity against MERS-CoV infection. RBD-Fd potently protected hDPP4 transgenic mice from lethal MERS-CoV challenge. These results suggest that MERS-CoV RBD in its trimeric form maintains native conformation and induces protective neutralizing antibodies, making it a candidate for further therapeutic development.
Human Vaccines & Immunotherapeutics | 2017
Yufei Wang; Wanbo Tai; Jie Yang; Guangyu Zhao; Shihui Sun; Chien Te K Tseng; Shibo Jiang; Yusen Zhou; Lanying Du; Jimin Gao
ABSTRACT Middle East respiratory syndrome (MERS) continues to raise worldwide concerns due to its pandemic potential. Increased MERS cases and no licensed MERS vaccines highlight the need to develop safe and effective vaccines against MERS. We have previously demonstrated that a receptor-binding domain (RBD) fragment containing residues 377–588 of MERS-coronavirus (MERS-CoV) spike protein is a critical neutralizing domain and an important vaccine target. Nevertheless, its optimal immunogen dosage and immunization interval, key factors for human-used vaccines that induce protective immunity, have never been investigated. In this study, we optimized these criteria using a recombinant MERS-CoV RBD protein fused with Fc (S377–588-Fc) and utilized the optimal immunization schedule to evaluate the protective efficacy of RBD against MERS-CoV infection in human dipeptidyl peptidase 4 transgenic (hDPP4-Tg) mice. Compared with one dose and 2 doses at 1-, 2-, and 3-week intervals, a regimen of 2 doses of this protein separated by an interval of 4 weeks induced the strongest antibody response and neutralizing antibodies against MERS-CoV infection, and maintained at a high level during the detection period. Notably, RBD protein at the optimal dosage and interval protected hDPP4-Tg mice against lethal MERS-CoV challenge, and the protection was positively correlated with serum neutralizing antibodies. Taken together, the optimal immunogen dosage and immunization interval identified in this study will provide useful guidelines for further development of MERS-CoV RBD-based vaccines for human use.
Expert Review of Vaccines | 2016
Lanying Du; Wanbo Tai; Yusen Zhou; Shibo Jiang
ABSTRACT First identified in 2012, Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is listed as a new Category C Priority Pathogen. While the high mortality of MERS-CoV infection is further intensified by potential human-to-human transmissibility, no MERS vaccines are available for human use. This review explains immune responses resulting from MERS-CoV infection, describes MERS vaccine criteria, and presents available small animal models to evaluate the efficacy of MERS vaccines. Current advances in vaccine development are summarized, focusing on specific applications and limitations of each vaccine category. Taken together, this review provides valuable guidelines toward the development of an effective and safe MERS vaccine. This article is written for a Special Focus Issue of Expert Review of Vaccines on ‘Vaccines for Biodefence’.
Journal of Virology | 2017
Jian Shang; Yuan Zheng; Chang Liu; Qibin Geng; Wanbo Tai; Lanying Du; Yusen Zhou; Wei Zhang; Fang Li
ABSTRACT Coronavirus spike proteins from different genera are divergent, although they all mediate coronavirus entry into cells by binding to host receptors and fusing viral and cell membranes. Here, we determined the cryo-electron microscopy structure of porcine deltacoronavirus (PdCoV) spike protein at 3.3-Å resolution. The trimeric protein contains three receptor-binding S1 subunits that tightly pack into a crown-like structure and three membrane fusion S2 subunits that form a stalk. Each S1 subunit contains two domains, an N-terminal domain (S1-NTD) and C-terminal domain (S1-CTD). PdCoV S1-NTD has the same structural fold as alpha- and betacoronavirus S1-NTDs as well as host galectins, and it recognizes sugar as its potential receptor. PdCoV S1-CTD has the same structural fold as alphacoronavirus S1-CTDs, but its structure differs from that of betacoronavirus S1-CTDs. PdCoV S1-CTD binds to an unidentified receptor on host cell surfaces. PdCoV S2 is locked in the prefusion conformation by structural restraint of S1 from a different monomeric subunit. PdCoV spike possesses several structural features that may facilitate immune evasion by the virus, such as its compact structure, concealed receptor-binding sites, and shielded critical epitopes. Overall, this study reveals that deltacoronavirus spikes are structurally and evolutionally more closely related to alphacoronavirus spikes than to betacoronavirus spikes; it also has implications for the receptor recognition, membrane fusion, and immune evasion by deltacoronaviruses as well as coronaviruses in general. IMPORTANCE In this study, we determined the cryo-electron microscopy structure of porcine deltacoronavirus (PdCoV) spike protein at a 3.3-Å resolution. This is the first atomic structure of a spike protein from the deltacoronavirus genus, which is divergent in amino acid sequences from the well-studied alpha- and betacoronavirus spike proteins. Here, we described the overall structure of the PdCoV spike and the detailed structure of each of its structural elements. Moreover, we analyzed the functions of each of the structural elements. Based on the structures and functions of these structural elements, we discussed the evolution of PdCoV spike protein in relation to the spike proteins from other coronavirus genera. This study combines the structure, function, and evolution of PdCoV spike protein and provides many insights into its receptor recognition, membrane fusion, and immune evasion.
Microbes and Infection | 2017
Yan Guo; Lei He; Nianping Song; Pei Li; Shihui Sun; Guangyu Zhao; Wanbo Tai; Shibo Jiang; Lanying Du; Yusen Zhou
Abstract Highly pathogenic influenza viruses continue to cause serious threat to public health due to their pandemic potential, calling for an urgent need to develop effective, safe, convenient, and universal vaccines against influenza virus infection. In this study, we constructed two recombinant protein vaccines, 2H5M2e-2H7M2e-H5FP-H7FP (hereinafter M2e-FP-1) and 2H5M2e-H5FP-2H7M2e-H7FP (hereinafter M2e-FP-2), by respectively linking highly conserved sequences of two molecules of ectodomain of M2 (M2e) and one molecule of fusion peptide (FP) epitope of hemagglutinin (HA) of H5N1 and H7N9 influenza viruses in different orders. The Escherichia coli-expressed M2e-FP-1 and M2e-FP-2 proteins induced similarly high-titer M2e-FP-specific antibodies in the immunized mice. Importantly, both proteins were able to prevent lethal challenge of heterologous H1N1 influenza virus, with significantly reduced viral titers and alleviated pathological changes in the lungs, as well as increased body weight and complete survivals, in the challenge mice. Taken together, our study demonstrates that highly conserved M2e and FP epitope of HA of H5N1 and H7N9 influenza viruses can be used as important targets for development of safe and economical universal influenza vaccines, and that the position of H7N9 M2e and H5N1 HA epitope sequences in the vaccine components has no significant effects on the immunogenicity and efficacy of M2e-FP-based subunit vaccines.
Emerging microbes & infections | 2017
Yanling Wu; Shun Li; Lanying Du; Chunyu Wang; Peng Zou; Binbin Hong; Mengjiao Yuan; Xiaonan Ren; Wanbo Tai; Yu Kong; Chen Zhou; Lu Lu; Xiaohui Zhou; Shibo Jiang; Tianlei Ying
The Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, has emerged as a global public health concern. Pre-existing cross-reactive antibodies against other flaviviruses could modulate immune responses to ZIKV infection by antibody-dependent enhancement, highlighting the importance of understanding the immunogenicity of the ZIKV envelope protein. In this study, we identified a panel of human monoclonal antibodies (mAbs) that target domain III (DIII) of the ZIKV envelope protein from a very large phage-display naive antibody library. These germline-like antibodies, sharing 98%–100% hoLogy with their corresponding germline IGHV genes, bound ZIKV DIII specifically with high affinities. One mAb, m301, broadly neutralized the currently circulating ZIKV strains and showed a synergistic effect with another mAb, m302, in neutralizing ZIKV in vitro and in a mouse model of ZIKV infection. Interestingly, epitope mapping and competitive binding studies suggest that m301 and m302 bind adjacent regions of the DIII C–C′ loop, which represents a recently identified cryptic epitope that is intermittently exposed in an uncharacterized virus conformation. This study extended our understanding of antigenic epitopes of ZIKV antibodies and has direct implications for the design of ZIKV vaccines. Emerging Microbes & Infections (2017) 6, e89; doi:10.1038/emi.2017.79; published online 11 October 2017
Vaccine | 2018
Mun Peak Nyon; Lanying Du; Chien Te K Tseng; Christopher A. Seid; Jeroen Pollet; Kevin S. Naceanceno; Anurodh Shankar Agrawal; Abdullah Algaissi; Bi Hung Peng; Wanbo Tai; Shibo Jiang; Maria Elena Bottazzi; Ulrich Strych; Peter J. Hotez
Abstract Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 2040 patients and caused 712 deaths since its first appearance in 2012, yet neither pathogen-specific therapeutics nor approved vaccines are available. To address this need, we are developing a subunit recombinant protein vaccine comprising residues 377–588 of the MERS-CoV spike protein receptor-binding domain (RBD), which, when formulated with the AddaVax adjuvant, it induces a significant neutralizing antibody response and protection against MERS-CoV challenge in vaccinated animals. To prepare for the manufacture and first-in-human testing of the vaccine, we have developed a process to stably produce the recombinant MERS S377-588 protein in Chinese hamster ovary (CHO) cells. To accomplish this, we transfected an adherent dihydrofolate reductase-deficient CHO cell line (adCHO) with a plasmid encoding S377-588 fused with the human IgG Fc fragment (S377-588-Fc). We then demonstrated the interleukin-2 signal peptide-directed secretion of the recombinant protein into extracellular milieu. Using a gradually increasing methotrexate (MTX) concentration to 5 μM, we increased protein yield by a factor of 40. The adCHO-expressed S377-588-Fc recombinant protein demonstrated functionality and binding specificity identical to those of the protein from transiently transfected HEK293T cells. In addition, hCD26/dipeptidyl peptidase-4 (DPP4) transgenic mice vaccinated with AddaVax-adjuvanted S377-588-Fc could produce neutralizing antibodies against MERS-CoV and survived for at least 21 days after challenge with live MERS-CoV with no evidence of immunological toxicity or eosinophilic immune enhancement. To prepare for large scale-manufacture of the vaccine antigen, we have further developed a high-yield monoclonal suspension CHO cell line.
Emerging microbes & infections | 2018
Wanbo Tai; Lei He; Yufei Wang; Shihun Sun; Guangyu Zhao; Chuming Luo; Pei Li; Haiyan Zhao; Daved H. Fremont; Fang Li; Shibo Jiang; Yusen Zhou; Lanying Du
Zika virus (ZIKV) infection remains a serious health threat due to its close association with congenital Zika syndrome (CZS), which includes microcephaly and other severe birth defects. As no vaccines are available for human use, continuous effort is needed to develop effective and safe vaccines to prevent ZIKV infection. In this study, we constructed three recombinant proteins comprising, respectively, residues 296–406 (E296-406), 298–409 (E298-409), and 301–404 (E301-404) of ZIKV envelope (E) protein domain III (EDIII) fused with a C-terminal Fc of human IgG. Our results demonstrated that E298-409 induced the highest titer of neutralizing antibodies against infection with nine ZIKV strains isolated from different hosts, countries, and time periods, and it maintained long-term anti-ZIKV immunogenicity to induce neutralizing antibodies. Pups born to mice immunized with E298-409 were fully protected against lethal challenge with two epidemic human ZIKV strains, 2015/Honduras (R103451) and 2015/Colombia (FLR). Passive transfer of anti-E298-409 mouse sera protected pups born to naive mice, as well as type I interferon receptor-deficient adult A129 mice, from lethal challenge with human ZIKV strains R103451 and FLR, and this protection was positively correlated with neutralizing antibodies. These data suggest that the critical neutralizing fragment (i.e., a fragment that can induce highly potent neutralizing antibodies against divergent ZIKV strains) of ZIKV EDIII is a good candidate for development as an effective and safe ZIKV subunit vaccine to protect pregnant mothers and their fetuses against ZIKV infection. The E298-409-specific antibodies can be used for passive immunization to prevent ZIKV infection in newborns or immunocompromised adults.
Science China-life Sciences | 2017
Lei-Ping Zeng; Xing-Yi Ge; Cheng Peng; Wanbo Tai; Shibo Jiang; Lanying Du; Zhengli Shi
The 2002–2003 global pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) infected around 8,000 people with 10% mortality (http://www.who.int/csr/sars/en/). The virus has a positive-stranded RNA genome that encodes a large polyprotein (1a and 1ab), four structural proteins, including spike (S), small envelop (E), membrane (M), and nucleocapsid (N), as well as several accessory proteins (Hu et al., 2015). The S protein plays a key role in cellular entry and is functionally divided into two subunits: S1 at the N-terminal end responsible for cell attachment and S2 at the C-terminal end responsible for membrane fusion (Jiang et al., 2005). Angiotensin I converting enzyme 2 (ACE2) was identified as a cellular receptor of SARS-CoV (Li et al., 2003). A fragment (residues 318-520) of the SARS-CoV S1 subunit was identified as the receptor-binding domain (RBD) that plays a key role in binding ACE2 and, hence, mediating virus entry (Wong et al., 2004). Therefore, RBD in the S1 subunit of S protein contains the major neutralizing epitopes for inducing neutralizing antibodies, thus serving as an