Wanda M. Snow
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wanda M. Snow.
Neuroscience & Biobehavioral Reviews | 2013
Wanda M. Snow; Judy E. Anderson; Lorna S. Jakobson
Duchenne muscular dystrophy (DMD) is a genetic condition affecting predominantly boys that is characterized by fatal muscle weakness. While there is no cure, recent therapeutic advances have extended the lifespan of those with DMD considerably. Although the physiological basis of muscle pathology is well-documented, less is known regarding the cognitive, behavioral, and psychosocial functioning of those afflicted. Several lines of evidence point to central nervous system involvement as an organic feature of DMD, challenging our view of the disorder as strictly neuromuscular. This report provides a review of the literature on neuropsychological and neurobehavioral functioning in DMD. Recent research identifying associations with DMD and neuropsychiatric disorders is also discussed. Lastly, the review presents implications of findings related to nonmotor aspects of DMD for improving the quality of life in those affected. While the literature is often contradictory in nature, this review highlights some key findings for consideration by clinicians, educators and parents when developing therapeutic interventions for this population.
Molecular Neurobiology | 2014
Wanda M. Snow; Brenda M. Stoesz; Debbie M. Kelly; Benedict C. Albensi
Although traditionally associated with immune function, the transcription factor nuclear factor kappa B (NF-κB) has garnered much attention in recent years as an important regulator of memory. Specifically, research has found that NF-κB, localized in both neurons and glia, is activated during the induction of long-term potentiation (LTP), a paradigm of synaptic plasticity and correlate of memory. Further, experimental manipulation of NF-κB activation or its blockade results in altered memory and spatial navigation abilities. Genetic knockout of specific NF-κB subunits in mice results in memory alterations. Collectively, such data suggest that NF-κB may be a requirement for memory, although the direction of the response (i.e., memory enhancement or deficit) is inconsistent. A limited number of gene targets of NF-κB have been recently identified in neurons, including neurotrophic factors, calcium-regulating proteins, other transcription factors, and molecules associated with neuronal outgrowth and remodeling. In turn, several key molecules are activators of NF-κB, including protein kinase C and [Ca++]i. Thus, NF-κB signaling is complex and under the regulation of numerous proteins involved in activity-dependent synaptic plasticity. The purpose of this review is to highlight the literature detailing a role for NF-κB in synaptic plasticity, memory, and spatial navigation. Secondly, this review will synthesize the research evaluating gene targets of NF-κB in synaptic plasticity and memory. Although there is ample evidence to suggest a critical role for NF-κB in memory, our understanding of its gene targets in neurons is limited and only beginning to be appreciated.
Neuroscience & Biobehavioral Reviews | 2013
Brenda M. Stoesz; James F. Hare; Wanda M. Snow
Humans are intensely social animals, and healthy social relationships are vital for proper mental health (see Lim and Young, 2006). By using animal models, the behavior, mental, and physiological processes of humans can be understood at a level that cannot be attained by studying human behavior and the human brain alone. The goals of this review are threefold. First, we define affiliative social behavior and describe the primary relationship types in which affiliative relationships are most readily observed--the mother-infant bond and pair-bonding. Second, we summarize neurophysiological studies that have investigated the role of neurohypophyseal nanopeptides (oxytocin and vasopressin) and the catecholamine dopamine in regulating affiliative social behavior and the implications of said research for our understanding of human social behavior. Finally, we discuss the merits and limitations of the using a comparative approach to enhance our understanding of the mechanisms underlying human affiliative social behavior.
Frontiers in Molecular Neuroscience | 2016
Wanda M. Snow; Benedict C. Albensi
Although, better known for its role in inflammation, the transcription factor nuclear factor kappa B (NF-κB) has more recently been implicated in synaptic plasticity, learning, and memory. This has been, in part, to the discovery of its localization not just in glia, cells that are integral to mediating the inflammatory process in the brain, but also neurons. Several effectors of neuronal NF-κB have been identified, including calcium, inflammatory cytokines (i.e., tumor necrosis factor alpha), and the induction of experimental paradigms thought to reflect learning and memory at the cellular level (i.e., long-term potentiation). NF-κB is also activated after learning and memory formation in vivo. In turn, activation of NF-κB can elicit either suppression or activation of other genes. Studies are only beginning to elucidate the multitude of neuronal gene targets of NF-κB in the normal brain, but research to date has confirmed targets involved in a wide array of cellular processes, including cell signaling and growth, neurotransmission, redox signaling, and gene regulation. Further, several lines of research confirm dysregulation of NF-κB in Alzheimers disease (AD), a disorder characterized clinically by a profound deficit in the ability to form new memories. AD-related neuropathology includes the characteristic amyloid beta plaque formation and neurofibrillary tangles. Although, such neuropathological findings have been hypothesized to contribute to memory deficits in AD, research has identified perturbations at the cellular and synaptic level that occur even prior to more gross pathologies, including transcriptional dysregulation. Indeed, synaptic disturbances appear to be a significant correlate of cognitive deficits in AD. Given the more recently identified role for NF-κB in memory and synaptic transmission in the normal brain, the expansive network of gene targets of NF-κB, and its dysregulation in AD, a thorough understanding of NF-κB-related signaling in AD is warranted and may have important implications for uncovering treatments for the disease. This review aims to provide a comprehensive view of our current understanding of the gene targets of this transcription factor in neurons in the intact brain and provide an overview of studies investigating NF-κB signaling, including its downstream targets, in the AD brain as a means of uncovering the basic physiological mechanisms by which memory becomes fragile in the disease.
Reviews in Clinical Gerontology | 2010
Philip D. St. John; Wanda M. Snow; Suzanne L. Tyas
Alcohol use is common in older adults and is associated with numerous health and social problems. Recent evidence suggests that in addition to level of alcohol consumption, drinking pattern may also be important. Moderate alcohol intake may confer some cardiac benefits, while heavy episodic drinking seems particularly problematic. Detecting alcohol misuse in older adults is difficult since clinical acumen is often poor, screening questionnaires have serious limitations and laboratory tests are not diagnostic. Brief alcohol interventions to reduce alcohol consumption appear useful in younger populations, but are less studied in older adults. While there is increasing research into the issue of alcohol use among older adults, clinicians and policy-makers must rely on limited evidence when making clinical decisions.
Neuroreport | 2013
Suman Lakhi; Wanda M. Snow; Mark Fry
Insulin plays a crucial role in the regulation of energy balance. Within the central nervous system, hypothalamic nuclei such as the arcuate and ventromedial nuclei are targets of insulin; however, insulin may only access these nuclei after transport across the blood–brain barrier. Neurons of the subfornical organ are not protected by the blood–brain barrier and can rapidly detect and respond to circulating hormones such as leptin and ghrelin. Moreover, subfornical organ neurons form synaptic connections with hypothalamic control centers that regulate energy balance, including the arcuate and dorsomedial nuclei. However, it is unknown whether subfornical organ neurons respond to insulin. Using whole-cell current clamp, we examined the electrophysiological effects of insulin on rat subfornical organ neurons. Upon insulin application, 70% of neurons tested were responsive, with 33% of neurons tested (9/27) exhibiting hyperpolarization of membrane potential (−8.7±1.7 mV) and 37% (10/27) exhibiting depolarization (10.5±2.8 mV). Using pharmacological blockade, our data further indicate that the hyperpolarization was mediated by opening of KATP channels, whereas depolarization resulted from opening of Ih channels. These data are the first to show that insulin exerts a direct effect on the electrical activity of subfornical organ neurons and support the notion that the subfornical organ may act to communicate information on circulating satiety signals to homeostatic control centers.
Neurobiology of Learning and Memory | 2014
Wanda M. Snow; Judy E. Anderson; Mark Fry
Cerebellar subregions are recognized as having specialized roles, with lateral cerebellum considered crucial for cognitive processing, whereas vermal cerebellum is more strongly associated with motor control. In human Duchenne muscular dystrophy, loss of the cytoskeletal protein dystrophin is thought to cause impairments in cognition, including learning and memory. Previous studies demonstrate that loss of dystrophin causes dysfunctional signaling at γ-aminobutyric acid (GABA) synapses on Purkinje neurons, presumably by destabilization of GABAA receptors. However, potential differences in the intrinsic electrophysiological properties of Purkinje neurons, including membrane potential and action potential firing rates, have not been investigated. Here, using a 2×2 analysis of variance (ANOVA) experimental design, we employed patch clamp analysis to compare membrane properties and action potentials generated by acutely dissociated Purkinje neurons from vermal and lateral cerebellum in wild-type (WT) mice and mdx dystrophin-deficient mice. Compared to Purkinje neurons from WT mice, neurons from mdx mice exhibited more irregular action potential firing and a hyperpolarization of the membrane potential. Firing frequency was also lower in Purkinje neurons from the lateral cerebellum of mdx mice relative to those from WT mice. Several action potential waveform parameters differed between vermal and lateral Purkinje neurons, irrespective of dystrophin status, including action potential amplitude, slope (both larger in the vermal region), and duration (shorter in the vermal region). Moreover, the membrane potential of Purkinje neurons from the vermal region of WT mice exhibited a significant hyperpolarization and concurrent reduction in the frequency of spontaneous action potentials compared to Purkinje neurons from the lateral region. This regional hyperpolarization and reduction in spontaneous action potential frequency was abolished in mdx mice. These results from mice demonstrate the presence of differential electrophysiological properties between Purkinje neurons from different regions of the WT mouse cerebellum and altered intrinsic membrane properties in the absence of dystrophin. These findings provide a possible mechanism for the observations that absence of cerebellar dystrophin contributes to deficits in mental function observed in humans and mouse models of muscular dystrophy. Moreover, these results highlight the importance of distinguishing functional zones of the cerebellum in future work characterizing Purkinje neuron electrophysiology and studies using the model of dissociated Purkinje neurons from mice.
Developmental Dynamics | 2013
Alyssa Janke; Ritika Upadhaya; Wanda M. Snow; Judy E. Anderson
Background: Loss of dystrophin profoundly affects muscle function and cognition. Changes in the dystrophin‐glycoprotein complex (DGC) including disruption of nitric oxide synthase (NOS‐1) may result from loss of dystrophin or secondarily after muscle damage. Disruptions in NOS‐1 and beta‐dystroglycan (bDG) were examined in developing diaphragm, quadriceps, and two brain regions between control and mdx mice at embryonic day E18 and postnatal days P1, P10, and P28. Age‐dependent differential muscle loading allowed us to test the hypothesis that DGC changes are dependent on muscle use. Results: Muscle development, including loss of central nucleation and the localization of NOS‐1 and bDG, was earlier in diaphragm than quadriceps; these features were differentially disrupted in dystrophic muscles. The NOS‐1/bDG ratio, an index of DGC stability, was higher in dystrophic diaphragm (P10–P28) and quadriceps (P28) than controls. There were also distinct regional differences in NOS‐1 and bDG in brain tissues with age and strain. NOS‐1 increased with age in control forebrain and cerebellum, and in mdx cerebellum; NOS‐1 and bDG were higher in control than mdx mouse forebrain. Conclusions: Important developmental changes in structure and muscle DGC preceded the hallmarks of dystrophy, and are consistent with the impact of muscle‐specific differential loading during maturation. Developmental Dynamics 242:1369–1381, 2013.
Neuroscience | 2007
M.G. Wallace; Kelly Hartle; Wanda M. Snow; Nicole L. Ward; T.L. Ivanco
Symptoms of high altitude sickness including headache and neuropsychological dysfunction are thought to result from prolonged exposure to hypoxia. In order to explain how the brain adapts to lower oxygen pressure at high altitude, CD1 mice were exposed to 3 weeks of hypobaric hypoxic conditions. Analyses of the neuronal morphology of striatal medium spiny neurons (MSNs) revealed a significant decrease in dendritic length, yet no change in dendritic volume, in hypoxic mice relative to normoxic mice. Vascular data indicated an increase in blood vessel area in the striatum of mice exposed to prolonged hypoxia. A mouse model of high altitude exposure may assist in elucidating the mechanisms of cerebral adaptation to high altitudes in humans, and therefore aid in developing successful prevention techniques and treatment of problems associated with high altitude disease.
Frontiers in Molecular Neuroscience | 2015
Wanda M. Snow; Payam S. Pahlavan; Jelena Djordjevic; Danielle McAllister; Eric Platt; Shoug Alashmali; Michael J. Bernstein; Miyoung Suh; Benedict C. Albensi
Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory.