Wang Chang-ting
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wang Chang-ting.
Science China-life Sciences | 2008
Wang Chang-ting; Cao Guang-min; Wang Qilan; Jing Zengchun; Ding LuMing; Long Rui-jun
Alpine Kobresia meadows are major vegetation types on the Qinghai-Tibetan Plateau. There is growing concern over their relationships among biodiversity, productivity and environments. Despite the importance of species composition, species richness, the type of different growth forms, and plant biomass structure for Kobresia meadow ecosystems, few studies have been focused on the relationship between biomass and environmental gradient in the Kobresia meadow plant communities, particularly in relation to soil moisture and edaphic gradients. We measured the plant species composition, herbaceous litter, aboveground and belowground biomass in three Kobresia meadow plant communities in Haibei Alpine Meadow Ecosystem Research Station from 2001 to 2004. Community differences in plant species composition were reflected in biomass distribution. The total biomass showed a decrease from 13196.96±719.69 g/m2 in the sedge-dominated K. tibetica swamp to 2869.58±147.52 g/m2 in the forb and sedge dominated K. pygmaea meadow, and to 2153.08±141.95 g/m2 in the forbs and grasses dominated K. humilis along with the increase of altitude. The vertical distribution of belowground biomass is distinct in the three meadow communities, and the belowground biomass at the depth of 0–10 cm in K. tibetica swamp meadow was significantly higher than that in K. humilis and K. pygmaea meadows (P<0.01). The herbaceous litter in K. tibetica swamp was significantly higher than those in K. pygnaeca and K. humilis meadows. The effects of plant litter are enhanced when ground water and soil moisture levels are raised. The relative importance of litter and vegetation may vary with soil water availability. In the K. tibetica swamp, total biomass was negatively correlated to species richness (P<0.05); aboveground biomass was positively correlated to soil organic matter, soil moisture, and plant cover (P<0.05); belowground biomass was positively correlated with soil moisture (P<0.05). However, in the K. pygnaeca and K. humilis meadow communities, aboveground biomass was positively correlated to soil organic matter and soil total nitrogen (P<0.05). This suggests that the distribution of biomass coincided with soil moisture and edaphic gradient in alpine meadows.
Applied Animal Behaviour Science | 2008
Ding Lu-Ming; Long Rui-jun; Shang Zhanhuan; Wang Chang-ting; Yang Yuhai; Xu Songhe
Journal of Mountain Science | 2007
Wang Chang-ting
Chinese Journal of Ecology | 2007
Wang Chang-ting
Grassland of China | 2005
Wang Chang-ting; Shi Jian-jun
Grassland and Turf | 2006
Shang Zhanhuan; Ding Lingling; Long Ruijun; Ma YuShou; Shi Jianjun; Yu Xiao-jun; Wang Chang-ting; Ding Luming
Acta Pratacultural Science | 2012
Zhang Li; Wang Chang-ting; Liu Wei; Wang Qilan; Li li; Xiang Zeyu
Chinese Journal of Grassland | 2010
Wang QiLan; Wang Xi; Wang Chang-ting; Cao Guang-min; Long Rui-jun
Turang Tongbao | 2008
Wang Chang-ting; Long Runjun; Cao Guang-min; Wang Qilan; Jing Zengchun; Shi Jianjun
Acta Pratacultural Science | 2008
Wang Chang-ting