Wang Deng
Chongqing Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wang Deng.
Respiratory Research | 2012
Wang Deng; Chang Yi Li; Jin Tong; Wei Zhang; Dao-xin Wang
BackgroundStimulation of epithelial sodium channel (ENaC) increases Na+ transport, a driving force of alveolar fluid clearance (AFC) to keep alveolar spaces free of edema fluid that is beneficial for acute lung injury (ALI). It is well recognized that regulation of ENaC by insulin via PI3K pathway, but the mechanism of this signaling pathway to regulate AFC and ENaC in ALI remains unclear. The aim of this study was to investigate the effect of insulin on AFC in ALI and clarify the pathway in which insulin regulates the expression of ENaC in vitro and in vivo.MethodsA model of ALI (LPS at a dose of 5.0 mg/kg) with non-hyperglycemia was established in Sprague-Dawley rats receiving continuous exogenous insulin by micro-osmotic pumps and wortmannin. The lungs were isolated for measurement of bronchoalveolar lavage fluid(BALF), total lung water content(TLW), and AFC after ALI for 8 hours. Alveolar epithelial type II cells were pre-incubated with LY294002, Akt inhibitor and SGK1 inhibitor 30 minutes before insulin treatment for 2 hours. The expressions of α-,β-, and γ-ENaC were detected by immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting.ResultsIn vivo, insulin decreased TLW, enchanced AFC, increased the expressions of α-,β-, and γ-ENaC and the level of phosphorylated Akt, attenuated lung injury and improved the survival rate in LPS-induced ALI, the effects of which were blocked by wortmannin. Amiloride, a sodium channel inhibitor, significantly reduced insulin-induced increase in AFC. In vitro, insulin increased the expressions of α-,β-, and γ-ENaC as well as the level of phosphorylated Akt but LY294002 and Akt inhibitor significantly prevented insulin-induced increase in the expression of ENaC and the level of phosphorylated Akt respectively. Immunoprecipitation studies showed that levels of Nedd4-2 binding to ENaC were decreased by insulin via PI3K/Akt pathway.ConclusionsOur study demonstrated that insulin alleviated pulmonary edema and enhanced AFC by increasing the expression of ENaC that dependent upon PI3K/Akt pathway by inhibition of Nedd4-2.
Mediators of Inflammation | 2014
Ling Tang; Ying Zhao; Daoxin Wang; Wang Deng; Changyi Li; Qi Li; Shicong Huang; Chang Shu
Purpose. To investigate the prognostic significance of endocan, compared with procalcitonin (PCT), C-reactive protein (CRP),white blood cells (WBC), neutrophils (N), and clinical severity scores in patients with ARDS. Methods. A total of 42 patients with ARDS were initially enrolled, and there were 20 nonsurvivors and 22 survivors based on hospital mortality. Plasma levels of biomarkers were measured and the acute physiology and chronic health evaluation II (APACHE II) was calculated on day 1 after the patient met the defining criteria of ARDS. Results. Endocan levels significantly correlated with the APACHE II score in the ARDS group (r = 0.676, P = 0.000, n = 42). Of 42 individuals with ARDS, 20 were dead, and endocan was significantly higher in nonsurvivors than in survivors (median (IQR) 5.01 (2.98–8.44) versus 3.01 (2.36–4.36) ng/mL, P = 0.017). According to the results of the ROC-curve analysis and COX proportional hazards models, endocan can predict mortality of ARDS independently with a hazard ratio of 1.374 (95% CI, 1.150–1.641) and an area of receiver operator characteristic curve (AUROC) of 0.715 (P = 0.017). Moreover, endocan can predict the multiple-organ dysfunction of ARDS. Conclusion. Endocan is a promising biomarker to predict the disease severity and mortality in patients with ARDS.
Immunology Letters | 2014
Yan Zhao; Yi Huang; Jing He; Changyi Li; Wang Deng; Xuemei Ran; Daoxin Wang
An imbalanced Th17-mediated immune response contributes substantially to neutrophilic asthma. Studies have also demonstrated that peroxisome proliferator-activated receptor-γ (PPARγ) plays a critical role in inflammatory disease. However, the effect of PPARγ on airway inflammation in neutrophilic asthma remains unclear. In the current study, we evaluated the potential therapeutic role of rosiglitazone (RSG) in a new mouse model of asthma characterised by increased neutrophils rather than eosinophils. A co-culture system of DCs with CD4+ naïve T cells was established to evaluate the effects of RSG on T cell differentiation. After challenge with OVA, mice developed the typical pathophysiological features of asthma, including an increased number of neutrophils in the BALF and the up-regulation of IL-17. The numbers of Th17 cells and Th2 cells were also greatly elevated in the lungs. The administration of rosiglitazone reduced the pathophysiological features of asthma and decreased the up-regulated inflammatory mediators and cytokines. Furthermore, the cell viability in the co-culture system was markedly reduced by RSG. T-bet, Gata-3 and RORγt mRNA were down-regulated by RSG. These findings suggest that PPARγ is critical for airway inflammation during neutrophilic asthma, possibly due to its effect on Th cell proliferation and differentiation. These findings suggest that the therapeutic effect of rosiglitazone in neutrophilic asthma is partially due to the role of the PPARγ pathway in regulating T cell proliferation and differentiation.
Cell Death and Disease | 2016
Di Qi; Xumao Tang; Jing He; Daoxin Wang; Yan Zhao; Wang Deng; Xinyu Deng; Guoqi Zhou; Jing Xia; Xi Zhong; Shenglan Pu
Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin’s effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS.
BMC Infectious Diseases | 2012
Wang Deng; Min Yu; Hilary Ma; Liang An Hu; Gang Chen; Yong Wang; Jia Deng; Changyi Li; Jin Tong; Dao Xin Wang
BackgroundMiliary tuberculosis (TB) is an uncommon cause of acute respiratory distress syndrome (ARDS) with a high mortality. The aim of the present study was to evaluate the clinical characteristics, predictors and outcome of patients with ARDS caused by miliary TB.MethodsA retrospective study was conducted among patients with a diagnosis of ARDS with miliary TB in four hospitals from 2006 to 2010. Medical records and laboratory examinations of these patients were taken during the first 24 h of admission.ResultsEighty-five patients with miliary TB developed ARDS, 45 of whom survived (52.9%). The median age was 36.6 ± 12.5 years with 38 males (44.7%). Diabetes mellitus (DM) was the most common underlying disease (18.8%).ICU mortality was 47.1%. The time from admission to anti-tuberculosis therapy was 4.5 ± 2.0 days. Mean duration of mechanical ventilation was 8.5 ± 3.0 days in all patients. Duration of time to diagnosis, time from diagnosis to mechanical ventilation, and time to anti-tuberculosis therapy were significantly shorter in survivors than those in non-survivors. Diabetes mellitus (OR 5.431, 95%CI 1.471-20.049; P = 0.005), ALT (70-100U/L, OR 10.029, 95%CI 2.764-36.389; P = 0.001), AST (>94U/L,OR 8.034, 95%CI 2.200-29.341; P = 0.002), D-dimer (>1.6mg/L, OR 3.167, 95%CI 0.896-11.187; P = 0.042), hemoglobin (<90g/L, OR 14.824, 95%CI 3.713-59.179; P = 0.001), albumin (<25g/L, OR 15.896, 95%CI 3.975-63.566; P = 0.001) were independent predictors of ARDS development in the setting of miliary TB.ConclusionsAccurate diagnosis, early initiation of anti-tuberculosis therapy and mechanical ventilation are important for the outcome of patients with ARDS caused by miliary TB. DM, ALT, AST, D-dimer, hemoglobin, and albumin are independent predictors of ARDS development in patients with miliary TB.
International Journal of Molecular Medicine | 2017
Di Qi; Daoxin Wang; Chunrong Zhang; Xumao Tang; Jing He; Yan Zhao; Wang Deng; Xinyu Deng
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein-rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity-associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad-vaspin) to examine its effects on lipopolysaccharide (LPS)-induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10] levels, and intercellular cell adhesion molecule-1 (ICAM-1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)-vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF-α and IL-6) and endothelial-specific adhesion markers [vascular cell adhesion molecule-1 and E-selectin], activation of nuclear factor-κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad-vaspin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)-3β pathway. In addition, pretreatment of HPMECs with rh-vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal organization following LPS insult, which was accompanied by activation of the Akt/GSK3β pathway. In conclusion, the present study demonstrated that vaspin protects against LPS-induced ARDS by reversing EC barrier dysfunction via the suppression of inflammation, apoptosis and ROS production in pulmonary ECs, at least partially via activation of the Akt/GSK3β pathway. These findings provide evidence of a causal link between vaspin and EC dysfunction in ARDS, and suggest a potential therapeutic intervention for patients with ARDS.
Experimental Cell Research | 2015
Jing He; Di Qi; Daoxin Wang; Wang Deng; Yuan Ye; Longhua Feng; Tao Zhu; Yan Zhao; Chunrong Zhang
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by proteinaceous pulmonary edema and severe arterial hypoxemia with a mortality of approximately 40%. Stimulation of epithelial sodium channel (ENaC) promotes Na(+) transport, a rate-limiting step for pulmonary edema reabsorption. Insulin is known to participate in the ion transport; however, its role in pulmonary edema clearance and the regulatory mechanism involved have not been fully elucidated. In the current study, in a lipopolysaccharide-based mouse model of ALI, we found that insulin alleviated pulmonary edema by promoting ENaC-mediated alveolar fluid clearance through serum and glucocorticoid induced kinase-1 (SGK1). In alveolar epithelial cells, insulin increased the expression of α-, β-, and γ-ENaC, which was blocked by the mammalian target of rapamycin complex 2 (mTORC2) inhibitor or knockdown of Rictor (a necessary component of mTORC2), and SGK1 inhibitor, respectively. In addition, an immunoprecipitation study demonstrated that SGK1(Ser422) phosphorylation, the key step for complete SGK1 activation by insulin, was conducted through PI3K/mTORC2 pathway. Finally, we testified the role of mTORC2 in vivo by demonstrating that PP242 prevented insulin-stimulated SGK1 activation and ENaC increase during ALI. The data revealed that during ALI, insulin stimulates alveolar fluid clearance by upregulating the expression of α-, β-, and γ-ENaC at the cell surface, which was, at least, partially through activating mTROC2/SGK1 signaling pathway.
Respiration | 2014
Jing He; Yan Zhao; Wang Deng; Daoxin Wang
Background: The epithelial sodium channel (ENaC) is the driving force for pulmonary edema absorption in acute lung injury (ALI). Netrin-1 is a newly found anti-inflammatory factor that works by activating the adenosine 2B receptor (A2BAR). Meanwhile, activated A2BAR has the potential to enhance ENaC-dependent alveolar fluid clearance (AFC). However, whether netrin-1 can increase ENaC-mediated AFC by activating A2BAR remains unclear. Objectives: To investigate the effect of netrin-1 on AFC in ALI and clarify the pathway via which netrin-1 regulates the expression of ENaC in vivo and in vitro. Methods: An ALI model was established by intratracheal instillation of lipopolysaccharide (LPS; 5 mg/kg) in C57BL/J mice, followed by netrin-1 with or without pretreatment with PSB1115, via the caudal vein. Twenty-four hours later, the lungs were isolated for determination of the bronchoalveolar lavage fluid, the lung wet/dry weight (W/D) ratio, AFC, the expressions of α-, β-, and γ-ENaC, and cyclic adenosine monophosphate (cAMP) levels. LPS-stimulated MLE-12 cells were incubated with netrin-1 with or without preincubation with PSB1115. Twenty-four hours later, the expressions of α-, β-, and γ-ENaC were detected. Results: In vivo, netrin-1 expression was significantly decreased during ALI. Substituted netrin-1 significantly dampened the lung injury, decreased the W/D ratio, and enhanced AFC, the expressions of α-, β-, and γ-ENaC, and cAMP levels in ALI, which were abolished by specific A2BAR inhibitor PSB1115. In vitro, netrin-1 increased the expressions of α-, β-, and γ-ENaC, which were prevented by PSB1115. Conclusion: These results indicate that netrin-1 dampens pulmonary inflammation and increases ENaC-mediated AFC to alleviate pulmonary edema in LPS-induced ALI by enhancing cAMP levels through the activation of A2BAR.
Respiratory Physiology & Neurobiology | 2015
Ling Luo; Jia Deng; Daoxin Wang; Jing He; Wang Deng
Oestrogen (E) and progestogen (P) exert regulatory effects on the epithelial Na(+) channel (ENaC) in the kidneys and the colon. However, the effects of E and P on the ENaC and on alveolar fluid clearance (AFC) remain unclear, and the mechanisms of action of these hormones are unknown. In this study, we showed that E and/or P administration increased AFC by more than 25% and increased the expression of the α and γ subunits of ENaC by approximately 35% in rats subjected to oleic acid-induced acute lung injury (ALI). A similar effect was observed in the dexamethasone-treated group. Furthermore, E and/or P treatment inhibited 11β-hydroxysteroid dehydrogenase (HSD) type 2 (11β-HSD2) activity, increased corticosterone expression and decreased the serum adrenocorticotrophic hormone (ACTH) levels. These effects were similar to those observed following treatment with carbenoxolone (CBX), a nonspecific HSD inhibitor. Further investigation showed that CBX further significantly increased AFC and α-ENaC expression after treatment with a low dose of E and/or P. In vitro, E or P alone inhibited 11β-HSD2 activity in a dose-dependent manner and increased α-ENaC expression by at least 50%, and E combined with P increased α-ENaC expression by more than 80%. Thus, E and P may augment the expression of α-ENaC, enhance AFC, attenuate pulmonary oedema by inhibiting 11β-HSD2 activity, and increase the active glucocorticoid levels in vivo and in vitro.
Respiratory Research | 2014
Di Qi; Jing He; Daoxin Wang; Wang Deng; Yan Zhao; Yuan Ye; Longhua Feng