Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wang Sumin is active.

Publication


Featured researches published by Wang Sumin.


Global and Planetary Change | 1993

Mid-holocene climates and environments in China

Shi Yafeng; Kong Zhaozheng; Wang Sumin; Tang Lingyu; Wang Fubao; Yao Tandong; Zhao Xitao; Zhang Peiyuan; Shi Shaohua

Abstract This paper focuses mainly on the climatic and environmental variations 5 to 3 ka. B.P. with particular reference to one stable warmer and wetter millennium (7.2-6 ka B.P.). Some large-scale centennial warming was accompanied by an increase in precipitation owing to the expansion of the monsoon circulation, e.g. rapid warming during the period from 8.5 to 8.3 ka B.P. and was reflected in the high level of some inland lakes and the sudden expansion of vegetation in pollen diagrams. The growth of the Neolithic culture with agriculture and settlement in the present semi-arid area of Northwest China was undoubtedly related to the dramatic warming and wetting before 8 ka B.P. According to the proxy data of palynological studies, the deviation of annual mean temperature from todays about 7-6 ka B.P. was roughly estimated at about 1°C in South China, 2°C in the Changjiang (Yangtze) Valley, 3°C in North China and Northeast China. The strongest warming by 4–5°C was recorded in Qinghai-Xizang (Tibet) Plateau. The winter temperature rise was much greater than the annual average temperature. In the eastern half of China, the vegetation zones are mainly parallel to the latitude. During the climax of the Holocene warm period, the northern limit of the tropical monsoonal rain forest shifted less than 1° of latitude northward, the subtropical broad-leaved evergreen forest about 1° of latitude, the north subtropical deciduous and evergreen broad-leaved mixed forest about 3° of latitude in the coastal area but only 1–1.5° of latitude in mid-West China and the warm temperate deciduous forest moved 4° of latitude northward, greatly expanding its distribution. Further north, the cool temperate boreal forest withdrew from its southern boundary by about 2° of latitude. Global climatic warming in the mid-Holocene resulted in a sea-level rise. During the period from 6 to 5 ka BP. the sea-level was about 1–3 m higher than the present level. Large area of coastal lowland was submerged by sea water and frequency of occurrence of storm surges also increased during the high sea-level period.


Science China-earth Sciences | 2011

China's lakes at present: Number, area and spatial distribution

Ma Ronghua; Yang Guishan; Duan Hongtao; Jiang Jiahu; Wang Sumin; Feng Xue-zhi; Li AiNong; Kong Fanxiang; Xue Bin; Wu Jinglu; Li Shijie

Based on 11004 satellite images from CBERS CCD and Landsat TM/ETM, changes in the spatial characteristics of all lakes in China were determined following pre-established interpretation rules. This dataset was supported by 6843 digital raster images (1:100000 and 1:50000), a countrywide digital vector dataset (1:250000), and historical literature. Comparative data were corrected for seasonal variations using precipitation data. There are presently 2693 natural lakes in China with an area greater than 1.0 km2, excluding reservoirs. These lakes are distributed in 28 provinces, autonomous regions and municipalities and have a total area of 81414.6 km2, accounting for ∼0.9% of China’s total land area. In the past 30 years, the number of newly formed and newly discovered lakes with an area greater than 1.0 km2 is 60 and 131, respectively. Conversely, 243 lakes have disappeared in this time period.


Hydrobiologia | 2001

Multivariate analysis of heavy metal and nutrient concentrations in sediments of Taihu Lake, China*

Qu Wenchuan; Mike Dickman; Wang Sumin

Taihu Lake is one of the largest freshwater lakes in China. The Lake is very shallow with a mean depth of 1.9 m and an area of 2428 km2. Nutrient concentrations (Org-C, Tot-N and Tot-P) and heavy metal concentrations (Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sr, Zn, etc.) in the lakes surface sediments were sampled at 13 locations. This was done to determine if industrialized areas along the lakes coastline were impacting the nutrient and heavy metal distribution of the lakes surface sediments. Principal Component Analysis (PCA) was used to assess the degree of contamination and spatial distribution of heavy metals and nutrients in different areas of Taihu Lake.A distinctive spatial distribution of heavy metals and nutrients was observed. Sediments from a large embayment of Taihu Lake called Lake Wulihu had significantly higher nutrient concentrations (Org-C, 2.05–3.83%; Tot-N, 0.28–0.54%; Tot-P, 0.10–0.33%) than any other area of Taihu Lake. These high nutrient levels were associated with the input of untreated domestic sewage from the large (circa one million people) City of Wuxi, which discharges its effluents into the Liangxi River. As a result, Lake Wulihu is the most eutrophic area of Taihu Lake. The nearby Meiliang Bay suffered from the worst heavy metal contamination in Taihu Lake (e.g. As, 64.0; Ag, 4.2; Cd, 0.93; Co, 14.2; Cr, 155.0; Cu, 144.0; Hg, 0.25; Ni, 79.8; Pb, 143.0 and Zn, 471 mg kg−1). These high heavy metal concentrations were ascribed to the discharge of untreated and partially treated industrial waste water from Changzhou and Wujin via the Zhihugang River. Surface sediment samples from the east basin of Taihu Lake were characterized by high Org-C (1.0–2.3%) and Tot-N (0.18–0.37%) and low Tot-P (0.048–0.056%) concentrations. It is likely that macrophytes removal accounts for a major reduction of phosphorus in the sediments of the east basin of Taihu Lake.


Journal of Paleolimnology | 2004

Sedimentary geochemical evidence for recent eutrophication of Lake Chenghai, Yunnan, China

Wu Jinglu; Michael K. Gagan; Jiang Xuezhong; Xia Weilan; Wang Sumin

Geochemical anomalies and stable isotope ratios (δ18O, δ13C) in authigenic carbonates and organic matter (δ13C) from a 660-year sediment core from Lake Chenghai, southern China, provide a continuous history of recent lake eutrophication. The multi-proxy geochemical and isotopic record can be divided into a three-part history of contrasting limnological development, including: (1) a clear-water, oligotrophic open lake system (1340 and 1690 AD); (2) an environmentally unstable, hydrologically closed, oligotrophic lake system (1690–1940 AD); and (3) an increasingly eutrophic, closed lake system marked by higher organic matter, nitrogen, CaCO3, and pigment concentrations, and lower δ18O and δ13C values in authigenic calcite (1940–1999 AD). The unanticipated lowering of δ18O and δ13C of authigenic calcite during eutrophication is thought to be the result of disequilibrium water–carbonate fractionation of oxygen and carbon isotopes during periods of elevated primary production, pH, and [CO32−] activities in the water column. The recent eutrophication of Lake Chenghai indicated by these geochemical proxies is essentially simultaneous with large-scale human migration and the application of agricultural fertilizers in the catchment area during the 20th century.


Hydrobiologia | 1999

Evidence for an aquatic plant origin of ketones found in Taihu Lake sediments

Qu Wenchuan; Mike Dickman; Wang Sumin; Wu Ruijin; Zhang Pingzhong; Chen Jianfa

This is the first time that aquatic plants have been singled out as the major source of alkan-2-ones in the sediments of a freshwater lake. Formerly alkan-2-ones were regarded as products of microbiological oxidation of corresponding alkanes or β-oxidation and decarboxylation of fatty acids. The presence of alkan-2-ones in both the cyanobacteria, high aquatic plants and sediments of Taihu Lake in the eastern China is viewed as evidence for the biogenic origin of these compounds. Taihu Lake is one of the largest freshwater lakes in China. The dominant species in the West Taihu Basin is blue-green algae; the East Taihu Basin is covered by vascular plants. We have analyzed the ketones and saturated hydrocarbons in the surficial sediments and in plant samples from Taihu Lake. We found that the distribution models of alkan-2-ones in the sediment samples from Taihu Lake were very similar to those that we found in the aquatic plants from the lakes western and eastern basins. The western basin interrelation coefficient was 0.91 and the Eastern Basin interrelation coefficients were 0.80 and 0.75 for emergent plants and submergent plants, respectively. These are shown as the similar major carbon peaks, L/H, OEP and high abundance of 6,10,14-trimethylpentadecan-2-one etc. But there are poor relationships between the alkan-2-ones in the sediment with corresponding the normal alkanes in the sediment of West Taihu Basin (interrelation coefficient is 0.68) and in the East Taihu Basin (interrelation coefficient is 0.41). The alkan-2-ones of the surficial sediment in the West Taihu Basin are from blue-green algae and in the East Taihu basin are from vascular plants. The different distributions of sediment alkan-2-ones in the two basins are possible to be used as an indicator of algae-type and macrophyte-type lakes.


Science in China Series D: Earth Sciences | 2007

Holocene climate change in the Central Tibetan Plateau inferred by lacustrine sediment geochemical records

Wu Yanhong; Andreas Lücke; Bernd Wünnemann; Li Shijie; Wang Sumin

Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ13Corg), were analyzed using a 7.3 m core from Zigê Tangco. The source of the organic matter in the sediment was mainly from autochthonous phytoplankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ13Corg values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zigê Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zigê Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.


Science China-earth Sciences | 2006

Temporal-spatial variations of euphotic depth of typical lake regions in Lake Taihu and its ecological environmental significance

Zhang Yunlin; Qin Boqiang; Hu Weiping; Wang Sumin; Chen Yuwei; Chen Weimin

By using the data of underwater irradiance measured in the different lake regions of Lake Taihu during 1998–2004 and total suspended solids (TSS), wind speeds of the total 13 stations in typical lake regions during 1993–2003, this paper analyzes the factors of influencing on PAR (photosynthetically available radiation) attenuation, euphotic depth, and presents the temporal and spatial variations of euphotic depth of typical lake regions in Lake Taihu, and the spectral distributions of euphotic depth at station 2. The results show that the concentration of TSS is the most important factor impacting PAR attenuation, followed by chlorophyll a; chromophoric dissolved organic matter (CDOM) has little impact on the PAR euphotic depth. During 1993–2003, the mean yearly PAR euphotic depths of the typical lake regions ranged from 1.04 to 1.95 m with a mean value of 1.35±0.23 m. The PAR euphotic depth fell into 3 spatial zone types: Type I, the lowest, including the lake center and the inflows of rivers; Type II, intermediate, including Meiliang Bay, Wulihu Lake and Gonghu Bay; Type III, the greatest, including the East Lake Taihu; corresponding mean depths were approximately 1.1, 1.4, 2.0 m, respectively. The seasonal variations of euphotic depths were not quite the same in different lake regions. In the lake center, the mean values of PAR euphotic depth in summer and autumn were significantly greater than those in winter and spring; in the Meiliang Bay, winter means were significantly greater than in the other three seasons; in the East Lake Taihu, winter means were significantly less than in the other three seasons. However, no distinct seasonal change was recorded in the Wulihu Lake, Gonghu Bay and the inflows of rivers. The spectral distributions of euphotic depth present a minimal value at the blue light wave band of 400 nm, and a peak at the green light wave band of around 580 nm. In 1998 and 1999, based on the seasonal many-day continuous measurements, the PAR euphotic depths at station 2 were recorded 2.00±0.21, 2.52±0.45, 1.58±0.24, 2.00±0.15 m in spring, summer, autumn and winter, respectively. The peak value of 440 nm absorbed by phytoplankton corresponded to a euphotic depth of only 0.81–1.47 m (mean 1.07±0.29 m), which was much lower than the mean PAR euphotic depth of 1.98±0.41 m.


Science China-earth Sciences | 2001

Weak chemical weathering during the Little Ice Age recorded by lake sediments

Jin Zhangdong; Wang Sumin; Shen Ji; Zhang Enlou; Ji Junfeng; Li Fuchun

Low magnetic susceptibility, low Sr content and hence high Rb/Sr ratio in the lake sediment sequence indicate a weak chemical weathering process under arid and cold climate of the Little Ice Age in a single closed lake watershed. According to different geochemical behavior between rubidium and strontium in earth surface processes, variation of Rb/Sr ratios in the lake sediment sequence can be used as an effective geochemical proxy with definite climatic significance of chemical weathering in watershed. Unlike chemical weathering process in tropic zone and modern temperate-humid climate, concordant changes in both Sr content and magnetic susceptibility with δ18O values of Dunde ice core suggest that the weak chemical weathering was controlled by air temperature during the Little Ice Age maximum. After the Little Ice Age, chemical weathering intensity was controlled also gradually by precipitation with increasing in temperature.


Science China-earth Sciences | 2007

Palynological evidence for vegetational and climatic changes from the HQ deep drilling core in Yunnan Province, China

Xiao Xiayun; Shen Ji; Wang Sumin; Xiao HaiFeng; Tong Guobang

The high-resolution pollen study of a 737.72-m-long lake sediment core in the Heqing Basin of Yunnan Province shows that the vegetation and climate of mountains around the Heqing Basin went through six obvious changes since 2.780 Ma B.P. Namely, Pinus forest occupied most mountains around the studied area and the structure of vertical vegetational belt was simple between 2.780 and 2.729 Ma B.P., reflecting a relatively warm and dry climate. During 2.729–2.608 Ma B.P., the areas of cold-temperate conifer forest (CTCF) and Tsuga forest increased and the structure of vertical vegetational belt became clear. According to percentages of tropical and subtropical elements growing in low-altitude regions rifely increased, we speculate that the increase of CTCF and Tsuga forest areas mainly resulted from strong uplift of mountains which provided upward expanding space and growing condition for these plants. Thus, the climate of the low-altitude regions around the basin was relatively warm and humid. Between 2.608 and 1.553 Ma B.P., Pinus forest occupied most mountains around the studied area and forest line of CTCF rose, which reflects a moderately warm-dry climate on the whole. During 1.553–0.876 Ma B.P., the structure of vertical vegetational belt in mountains around the studied area became complicated and the amplitude of vegetational belts shifting up and down enlarged, which implies that the amplitude of climatic change increased, the climatic associational feature was more complex and the climate was moderately cold at a majority of the stage. During 0.876–0.252 Ma B.P., there were all vertical vegetational belts existing at present in mountains around the studied area. The elements of each belt were more abundant and complex than earlier. At different periods in the stage vertical vegetational belts occurred as expanding or shrinking, and alternated each other. The amplitude of vegetational belts shifting up and down was the maximum in the whole section. This change suggests that the amplitude of climatic change was evidently larger than earlier, but the frequency reduced and the climatic associational feature was more complex. From 0.252 Ma B.P. to the present, the most time was characteristic of the expanding of Pinus forest and semi-humid evergreen broad-leaved forest (SEBF) in mountains around the studied area, while expanding time of other vegetational belts was very short, which reflects a smaller amplitude of cold and warm fluctuation. On the basis of the six obvious cycles of vegetational and climatic changes, there were still many times of secondary vegetational successions and climatic oscillations. Based on the above analysis, the forcing mechanism of vegetational succession and climatic change in the Heqing Basin is further discussed. It is primarily considered that main influential factors were exterior factors such as orbital parameters, etc., but the uplift of the Qinghai-Tibet Plateau played a very important function for environmental changes in the Heqing Basin at two times obvious increase of vertical vegetational belts and three climatic transitions.


Science in China Series D: Earth Sciences | 2006

Historical trophic evolutions and their ecological responses from shallow lakes in the middle and lower reaches of the Yangtze River: Case studies on Longgan Lake and Taibai Lake

Yang Xiangdong; Shen Ji; Dong Xuhui; Liu Enfeng; Wang Sumin

The evolutions of diatom floras and the total phosphorous (TP) concentrations in the historical period were reconstructed for two lakes, Longgan and Taibai in the middle Yangtze River, based on high resolutional fossil diatom study from two sediment cores and an established regional diatom-TP transfer function. The TP concentration in Longgan Lake changed slightly in the range of 36–62 μg/L and kept its middle trophic level in the past 200 years. The changes of diatom assemblages reflect a macrophyte-dominated history of the lake. During the nineteenth century, the lake TP concentration increased comparatively, corresponding to the increase in abundance of benthic diatoms. The progressive increase of epiphytic diatoms since the onset of the twentieth century indicates the development of aquatic plants, coinciding with the twice drops of water TP level. The TP concentration in Taibai Lake kept a stable status about 50 μg/L before 1953 AD, while diatoms dominated by facultative planktonic Aulacoseira granulata shifted quickly to epiphytic diatom species, indicating a rapid expansion of aquatic vegetation. During 1953–1970 AD, the coverage of aquatic plants decreased greatly inferred by the low abundance of epiphytic diatoms as well as declined planktonic types, and the reconstructed TP concentration shows an obvious rising trend firstly, suggesting the beginning of the lake eutrophication. The lake was in the eutrophic condition after 1970, coinciding with the successive increase of planktonic diatoms. The comparison of the two lakes suggests the internal adjustment and purification function of aquatic plants for nutrients in water. The discrepancy of TP trends in the two lakes after 1960 reflects two different patterns of lake environmental response to human disturbance. Sediments in Taibai Lake clearly recorded the process of lake ecological transformation from the macrophyte-dominated stage to the algae-dominated stage. The limits of TP concentration (68–118 μg/L) in the transitional state can be considered as the critical value between the two stable ecosystems. Further work will be necessary to provide more evidence from the sediments in more eutrophic lakes for the primary inference. The reconstructive TP level and the inference of aquatic plants from fossil diatoms in different lakes, as well as their comparison provide a scientific basis for ecological restoration of eutrophic lakes in research regions.

Collaboration


Dive into the Wang Sumin's collaboration.

Top Co-Authors

Avatar

Shen Ji

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wu Jinglu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Xiangdong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wu Yanhong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xia Weilan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qu Wenchuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhu Yuxin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xue Bin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin Zhangdong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li Shijie

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge